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Abstract—Objective: A noninvasive intracranial pressure5
(ICP) estimation method is proposed that incorporates a6
model-based approach within a probabilistic framework to7
mitigate the effects of data and modeling uncertainties.8
Methods: A first-order model of the cerebral vasculature re-9
lates measured arterial blood pressure (ABP) and cerebral10
blood flow velocity (CBFV) to ICP. The model is driven by the11
ABP waveform and is solved for a range of mean ICP values12
to predict the CBFV waveform. The resulting errors between13
measured and predicted CBFV are transformed into likeli-14
hoods for each candidate ICP in two steps. First, a baseline15
ICP estimate is established over five data windows of 2016
beats by combining the likelihoods with a prior distribution17
of the ICP to yield an a posteriori distribution whose median18
is taken as the baseline ICP estimate. A single-state model19
of cerebral autoregulatory dynamics is then employed in20
subsequent data windows to track changes in the base-21
line by combining ICP estimates obtained with a uniform22
prior belief and model-predicted ICP. For each data window,23
the estimated model parameters are also used to determine24
the ICP pulse pressure. Results: On a dataset of thirteen25
pediatric patients with a variety of pathological conditions26
requiring invasive ICP monitoring, the method yielded for27
mean ICP estimation a bias (mean error) of 0.6 mmHg28
and a root-mean-squared error of 3.7 mmHg. Conclusion:29
These performance characteristics are well within the ac-30
ceptable range for clinical decision making. Significance:31
The method proposed here constitutes a significant step32
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towards robust, continuous, patient-specific noninvasive 33
ICP determination. 34

Index Terms—Bayesian estimation, model-based signal 35
processing, intracranial pressure, brain injury. 36

I. INTRODUCTION 37

INTRACRANIAL pressure (ICP) is the hydrostatic pressure 38

of the cerebrospinal fluid (CSF). The normal mean ICP in 39

healthy adults in the supine posture ranges from about 6 to 40

18 mmHg [1]–[3]. Its clinical importance derives from the fact 41

that elevated ICP can impair brain tissue perfusion, possibly 42

culminating in severe cerebral ischemic injury and brain herni- 43

ation [4], [5]. Such ICP elevations can occur in a variety of neu- 44

ropathological conditions that include hydrocephalus, traumatic 45

brain injury (TBI), hemorrhagic stroke, and brain tumors [4]. 46

Elevated ICPs are therefore treated aggressively in current clin- 47

ical practice. The latest consensus guidelines for TBI care in 48

adults recommend maintaining mean ICP below 22 mmHg [6] 49

and in children below 20 mmHg [7]. 50

Clinical ICP measurement modalities are invasive, require 51

neurosurgical expertise, and carry an associated risk of infec- 52

tion [8], [9]. ICP monitoring is therefore used only for severely 53

ill patients in spite of evidence that a larger pool of subjects 54

may benefit from ICP assessment [10]. This potential need has 55

prompted the development of noninvasive ICP (nICP) estima- 56

tion approaches. Despite significant research effort, however, 57

continuous nICP estimation has remained elusive and has not 58

been adopted in clinical practice [11]. For intermittent ICP as- 59

sessment, tympanic membrane displacement [12], optic nerve 60

sheath distension [13], and application of external pressure on 61

the eyeball to balance retro-orbital tissue pressure with ICP [14] 62

have all been shown to correlate with ICP. Examples of proposed 63

continuous nICP estimation methods include exploiting tran- 64

scranial acoustic signal properties [15], [16], measuring cere- 65

bral blood flow velocity (CBFV) and calculating CBFV-derived 66

indices [17], and measuring the arterial blood pressue (ABP) 67

waveform and employing machine learning based methods us- 68

ing ABP and CBFV as inputs [18]–[20]. 69

Recently, methods have been proposed to estimate mean ICP 70

using mechanistic models of cerebrovascular physiology that 71

relate cerebral blood flow (CBF), cerebral ABP (cABP), and 72

ICP [21]–[26]. In practice, CBF and cABP are not measured, 73

and these methods instead use CBFV and ABP measured at 74

a peripheral location (pABP) as surrogates. These approxima- 75
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Fig. 1. Illustration of proposed method for mean nICP estimation. Arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV) constitute
the input waveforms. The ICP and two model parameters that represent cerebrovascular flow resistance and compliance, α and β, are then
estimated. First, a baseline ICP is established by generating an a posteriori ICP distribution by combining a model-derived ICP likelihood distribution
with a preselected prior belief. Model-derived changes in this baseline are subsequently filtered via predictions, and are added incrementally to the
baseline to yield longitudinal ICP estimates.

tions, if not properly accounted for, can introduce errors in the76

estimated nICP because the ABP profile changes along the dis-77

tributed arterial tree due to reflections from arterial branching78

sites and vessel taper [27]. Additionally, there is a physiologi-79

cal time delay between pABP and cABP due to the finite ABP80

wave propagation velocity as well as a time delay introduced by81

different bedside monitoring devices used to measure the ABP82

and CBFV waveforms [25]. Here we propose a probabilistic,83

model-based mean nICP estimation and tracking framework to84

reduce estimation sensitivity to such approximations. We then85

extend this framework to estimate the ICP pulse amplitude.86

First, we estimate the mean ICP. To do so we represent cere-87

bral hemodynamics as a first-order, time-varying system that88

relates cABP, mean ICP, and CBF, and model the temporal89

ICP evolution as a first-order autoregressive (AR) process. We90

use radial ABP (rABP) and CBFV as surrogates for cABP and91

CBF, respectively. Our method achieves resilience to the tempo-92

ral misalignment via a Bayesian estimation framework, wherein93

we solve our model of cerebral hemodynamics for a physiolog-94

ically plausible range of candidate ICP values and time offsets95

to form an ICP likelihood distribution. We combine this distri-96

bution with a prior belief about the patient’s ICP and select the97

resulting posterior distribution’s median as the baseline ICP. In98

addition, the likelihood distributions of each data window are99

utilized to form estimates of the cerebrovascular flow resistance 100

and compliance that are then used to estimate the ICP pulse 101

pressure in a computationally simple and training-free man- 102

ner. Subsequent changes in the mean ICP are computed with a 103

uniform prior belief to reduce dependence on the initial prior 104

distribution. The estimated ICP changes are further filtered via 105

predictions obtained from the AR model of ICP dynamics for 106

increased robustness. 107

We first present our nICP estimation method in Section II 108

and describe our clinical data in Section III. We present and 109

discuss our nICP estimation results on a cohort of thirteen pe- 110

diatric patients in Sections IV and V, respectively, and provide 111

concluding remarks in Section VI. 112

II. NONINVASIVE ICP ESTIMATION METHOD 113

We model the CBFV waveform as the output of a two-tap 114

finite impulse response (FIR) filter whose input is the cerebral 115

perfusion pressure (CPP) – the difference between cABP and 116

ICP (Fig. 1). We neglect pulsatility in the ICP waveform, thus 117

simplifying our task to estimating the filter taps (or model pa- 118

rameters) and the mean ICP value using measured rABP and 119

CBFV. To do so, we subtract a range of physiologically plausi- 120

ble mean ICP values from the rABP signals to generate a set of 121
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CPP waveforms. We then obtain estimates of the FIR filter taps122

for each CPP waveform by minimizing the associated CBFV123

prediction error in a least-square error sense. This is done for a124

range of time offsets between the CBFV and CPP signals. The125

CBFV prediction errors obtained for each candidate CPP and126

time offset pair are then transformed into a likelihood distribu-127

tion of ICP values. Point estimates of this likelihood distribution128

(such as the mean or median) may then be taken as the final nICP129

estimates.130

We employ this scheme in a two-stage process to increase131

the nICP estimation accuracy (Fig. 1). First, we establish a132

baseline nICP estimate and subsequently track changes in this133

value. To set the baseline, we combine the likelihood distribution134

with a preset prior belief of ICP values, and take the median135

of the resulting a posteriori distribution as the nICP estimate.136

This procedure is repeated for several data windows, and the137

nICP estimates are averaged together to yield the baseline. We138

employed a prior distribution that generously models ICP values139

encountered at the bedside – extremely high and low values140

are given significant weight – in order to ensure our method’s141

generalizability.142

After this initial baseline estimation stage, subsequent nICP143

estimates are computed with a uniform distribution to reduce144

dependence on the initial prior belief. A downside of using a145

uniform distribution, however, is that the resulting nICP esti-146

mates are more prone to deviate from measured values. In our147

method, we addressed this problem by filtering changes in es-148

timated nICP by model-predicted ICP changes via a Kalman149

filter-like approach [28], and subsequently adding the filtered150

nICP changes back to the baseline. We first describe our model151

of cerebral hemodynamics, before describing the associated es-152

timation and tracking method.153

A. Model of Cerebral Hemodynamics154

We employed a discrete-time approximation of the two-155

element continuous-time model proposed earlier by our156

group [21], [23] with the addition of an AR process descrip-157

tion of ICP evolution. For the mth estimation window, this158

continuous-time model is of the form159

q(t − t0) =
1

Rm
(pa(t) − pi(t)) + Cm

d

dt
(pa(t) − pi(t)) (1)

where q and pa denote the CBFV and cABP, respectively160

(Fig. 2), and t0 is an unknown time offset between measured161

CBFV and ABP. The time offset explicitly reflects the real-162

ity associated with measuring pABP and the model assuming163

cABP.164

The resistive element, Rm , models resistance to cerebrovas-165

cular blood flow, while the capacitive element, Cm , represents166

the aggregate arterial and brain tissue compliance. The cere-167

bral autoregulatory processes that modulate the resistance and168

compliance tend to occur over timescales longer than the data169

window lengths considered here [23], and hence both Rm and170

Cm are assumed constant over the duration of a data window,171

chosen to be 20 beats throughout this work.172

We initially focus on estimating the mean ICP, I[m], in the173

data window, and make the simplifying assumption that pulsatil-174

Fig. 2. (a) Continuous-time circuit model of cerebral hemodynamics
proposed in [23]. We employed a discrete-time approximation of this
model augmented with an AR process description of ICP evolution.
(b) Discrete-time model of the cerebral vasculature. Samples of the
cABP, pa , and the CBFV, q, are related by a time-varying FIR filter,
whose coefficients, αm and βm are assumed to remain constant during
individual estimation windows. The mean ICP, I [m], is also assumed to
be constant during an estimation window, and its evolution is modeled
by an AR process.

ity in the ICP waveform may initially be ignored. This leads to 175

the simplified dynamic relationship 176

q(t − t0) =
1

Rm
(pa(t) − I[m]) + Cm

d

dt
(pa(t) − I[m]) (2)

where we have substituted the mean ICP, I[m], for the ICP 177

waveform and assume I[m] to be constant over the duration of 178

an estimation window. Approximating the derivative operation 179

by first-order finite differences, and denoting the discrete-time 180

sampling index with n, we obtain 181

q[n − d0 ] =
(

1
Rm

+ Cm fs

)
(pa [n] − I[m])

− Cm fs (pa [n − 1] − I[m])

= αm (pa [n] − I[m]) + βm (pa [n − 1] − I[m]) (3)

where fs is the sampling rate, αm = 1/Rm + Cm fs , βm = 182

−Cm fs , and d0 = fs × t0 . We chose first-order finite differ- 183

ences because cABP and CBFV are quasi-periodic signals, and 184

their spectral content is concentrated around a few frequency 185

harmonics, thus limiting the order of models whose parameters 186

can be reliably estimated using only the cABP and CBFV [29]. 187

Like their continuous-time counterparts, the model parameters 188

αm and βm are assumed to remain constant during individual 189

estimation windows. 190

We augmented this model with a first-order AR process to 191

model inter-estimation-window temporal evolution of the mean 192

ICP. This AR process is of the form 193

ΔI[m] = γm ΔI[m − 1] + vm (4)

where ΔI[m] = I[m] − I[m − 1] is the window-by-window 194

difference in mean ICP, and vm is a white-noise sequence with 195

variance σ2
v . The parameter γm represents the autoregulatory 196

state, with values of γm close to zero modeling static mean ICP 197

values. In our method, we set γm = 1 to model rapidly changing 198
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mean ICP values. Final mean nICP estimates are obtained by199

fusing noninvasive estimates of ΔI with predictions generated200

from this AR model.201

The first-order system of (3), along with the ICP AR process202

description of (4), form our complete model of cerebral hemo-203

dynamics in the proposed mean nICP estimation method, and204

are summarized schematically in Fig. 2. This method comprises205

two stages that employ a common model-solving routine. We206

describe this routine next, and then proceed to describing the207

two stages. Finally, we describe how our model-based estima-208

tion routine can also be used to noninvasively estimate the ICP209

pulse pressure.210

B. Model-Based Bayesian Estimation Routine211

The model-based nICP estimation routine is employed in212

both baseline determination and subsequent nICP tracking, and213

it solves the model in (3) for a range of candidate ICP and214

time offset pairs. It takes as input rABP and CBFV signals in215

individual estimation windows, and computes nICP estimates216

by treating each window independently. Since all operations are217

confined to individual data windows, we omit the window index,218

m, for clarity in the remainder of this section.219

We select the time offset range on a window-by-window basis220

such that, on average, the CBFV peaks are constrained to lead221

the corresponding rABP systolic peaks whilst ensuring that the222

diastolic points of the two waveforms are aligned with each223

other (Fig. 3). These imposed constraints are motivated by the224

underlying Windkessel-like model (Fig. 2a) that implies that225

both signals should start rising nearly simultaneously at the226

onset of systole, with the CBFV rising faster to reach its peak227

before the rABP. To compensate for inaccurate beat detections228

and modeling inaccuracies, we allowed the diastolic indices of229

the two waveforms to differ by at most three sampling intervals230

(≈25 ms). All time offsets that satisfy these two criteria are231

included in the time offset scan range.232

To form the ICP scan range, we start scanning from an ICP233

of 0 mmHg in increments of 1 mmHg, a granularity deemed234

sufficient for clinical purposes. We stop at the mean rABP in235

the estimation window, as the ICP should not exceed the mean236

rABP itself. Negative ICP values are not considered here as they237

occur rarely [30], particularly in the pathologies of interest here.238

For each ICP and time offset pair, we compute estimates for239

α and β in a least-square error sense240

[
α̂I , d , β̂I , d

]ᵀ
=

(
ΦI ᵀ

ΦI
)†

ΦI ᵀ
qd

where qd = [q[2 − d], . . ., q[N − d]]ᵀ

ΦI =

⎡
⎢⎣

pa [2] − I pa [1] − I
...

...
pa [N ] − I pa [N − 1] − I

⎤
⎥⎦ (5)

Here, the † symbol represents a matrix pseudo-inverse, N de-241

notes the number of samples in the estimation window, and I and242

d signify the solution’s dependence on the candidate ICP and243

time offset values, respectively. Values for the cerebrovascular244

flow resistance and compliance can be estimated according to 245

R̂I , d =
(
α̂I , d + β̂I , d

)−1

ĈI , d = −β̂I , d/fs (6)

The corresponding residual-error norm is given by 246

ζI , d =
∥∥∥ΦI

[
α̂I , d , β̂I , d

]ᵀ
− qd

∥∥∥
2

(7)

We define a likelihood distribution L(I, d) over the ICP and 247

time offsets as 248

L(I, d) =
1
SL

× exp

{
−

(
ζI , d

ζm

)2
}

ζm = min
I , d

ζI , d (8)

where SL is chosen so that L(I, d) normalizes to one. This 249

formulation assigns a high likelihood to (I, d) pairs that result 250

in a small residual CBFV prediction error, and a low likelihood 251

to pairs with large residual error norms. To subsequently em- 252

ploy a prior distribution across the ICP, we marginalize L(I, d) 253

across the time offsets to generate a one-dimensional likelihood 254

distribution defined across ICP only 255

L(I) =
∑

d

L(I, d) (9)

An nICP estimate may be derived from the likelihood by com- 256

puting a point statistic, ÎL , with an associated distribution vari- 257

ance, σ2
L . For our application here, ÎL = median(L(I)). Finally, 258

an a posteriori distribution is generated by combining the like- 259

lihood distribution with our prior belief 260

Pr(I|pa , qv ) =
1

SP
× Pr(I)L(I) (10)

where Pr(I) is the prior belief and SP is chosen so that the 261

distribution normalizes to one. The median and variance of this 262

combined distribution are denoted as ÎC and σ2
C , respectively. 263

In our method, we used both a uniform belief and a belief of 264

the form 265

Pr(I) =⎧⎪⎨
⎪⎩

1
S

× ∑2
k=1

wk√
2πσk

exp

{
−1

2

(
I − μk

σk

)2
}

, I ∈ Irange

0, I /∈ Irange

w1 , w2 ∈ [0, 1], subject to the constraint w1 + w2 = 1 (11)

where Irange denotes the ICP scan range, and S is chosen such 266

that Pr(I) sums to unity. 267

We established the parameters of this distribution in a pilot ex- 268

ploration using 46 twenty-beat estimation windows from three 269

subjects [31], and found the mean ICP and associated standard 270

deviation to be 13.6 and 2.8 mmHg, respectively. We then set 271

μ1 = 13.6 mmHg to model low ICP, and set σ1 = 10 mmHg – a 272

value larger than the ICP standard deviation in the 46 estimation 273

windows – to model greater variation in ICP. Additionally, we 274

set μ2 = 50 mmHg and σ2 = 20 mmHg to model high ICP. 275
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Fig. 3. Illustration of the time offset range. The input ABP and CBFV waveforms are plotted in black and red, respectively, and the range over
which the CBFV signal is shifted is plotted as a red band.

Fig. 4. Prior distribution used for baseline estimation. ICP values be-
low 5 mmHg, as well as those exceeding 30 mmHg, have been as-
signed probabilities larger than that found in our data to make our
method broadly applicable. The distribution is composed of a mix-
ture of two truncated Gaussian distributions that model low and high
ICP values.

We set w1 = 0.8 and w2 = 0.2, noting that the mean ICP ex-276

ceeded 30 mmHg in 20% of the data reported in a previous277

study [23]. The resulting distribution is shown in Fig. 4.278

C. Baseline nICP Estimation279

To establish a baseline, we compute a posteriori nICP esti-280

mates, ÎC , in the first Mb = 5 twenty-beat data windows. These281

estimates are averaged to yield the baseline, ÎB . We set Mb to282

five to ensure that one hundred beats (normally more than a283

minute) of data are analyzed before setting the baseline.284

The baseline ICP is then passed to the subsequent tracking285

stage. This stage uses the nICP estimates ÎL derived from the286

likelihood distribution alone. This amounts to using a uniform287

prior belief, and is done to reduce dependence on the initial288

prior distribution. Using a uniform belief, however, also in-289

creases the chances of erroneous nICP estimates. We therefore290

developed a tracking framework that filters the changes in nICP291

estimates computed with the uniform prior belief. This filter-292

ing is achieved by combining the changes in nICP estimates293

with model-predicted changes obtained with our AR process294

model.295

D. Tracking Changes in the ICP 296

Filtered nICP-change estimates are computed by combining 297

model-predicted changes in ICP with noninvasively determined 298

window-by-window estimates of ICP change. The latter are 299

computed using the method in Section II-B with a uniform 300

prior distribution, and are denoted as ΔL[m] to suggest their 301

dependence on the nICP estimates ÎL derived from the likeli- 302

hood distribution. Their associated variances are σ2
ΔL [m]. We 303

denote the model-predicted ICP changes as ΔP [m]. Their esti- 304

mated variances are denoted as σ2
ΔP [m]. Likewise, the filtered 305

nICP-change estimates are denoted as Δ̂I[m] and their variance 306

estimates as σ2
Δ̂I

[m]. 307

Assuming that likelihood distributions of successive estima- 308

tion windows are statistically independent, 309

ΔL[m] = ÎL [m] − ÎL [m − 1]

σ2
ΔL [m] = σ2

L [m] + σ2
L [m − 1] (12)

The variance estimates are upper bounds on the true variances 310

because, by virtue of the independence assumption, the covari- 311

ance terms have not been included. We compensated for this by 312

using relatively large values of σ2
v in (4). Next, we compute the 313

model-predicted ICP change and its variance as 314

ΔP [m] = γm Δ̂I[m − 1]

σ2
ΔP [m] = γ2

m σ2
Δ̂I

[m − 1] + σ2
v (13)

where the prediction is made using the filtered change estimate, 315

Δ̂I[m − 1], of the previous window. To initialize this computa- 316

tion at m = Mb + 1, we set Δ̂I[Mb ] and σΔ̂I
[Mb ] to 0 mmHg. 317

Once both model-predicted and noninvasively determined 318

ICP changes and their variances have been computed, they are 319

combined such that 320

x =
σ2

ΔP [m]
σ2

ΔP [m] + σ2
ΔL [m]

σ2
Δ̂I

[m] = x σ2
ΔL [m]

Δ̂I[m] = (1 − x) ΔP [m] + x ΔL[m] (14)
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The resulting filtered change, Δ̂I[m], is added to Î[m − 1] to321

yield the final nICP estimate,322

Î[m] = Î[m − 1] + Δ̂I[m] (15)

where the baseline, ÎB , is used in the first iteration.323

In this formulation, (14) can be seen to merge the model-324

predicted and noninvasively determined estimates of the325

window-by-window ICP change by assigning greater weight326

to the estimate with lesser variance. This Kalman-filter like pro-327

cess is repeated for subsequent estimation windows to yield328

nICP estimates with reduced dependence on the initial prior329

information.330

E. Noninvasive ICP Pulse Pressure Estimation331

The proposed pseudo-Bayesian approach generates a likeli-332

hood distribution, L(I, d), that may be used to determine av-333

erage (window-by-window) values for the model parameters,334

αm and βm , or – equivalently – their continuous-time counter-335

parts, Rm and Cm . These model parameters can then be used336

to estimate the average window-by-window ICP pulse pressure.337

The pulse pressure estimation procedure can be applied inde-338

pendently to each data window. In the following description339

we therefore again omit the window index, m. Then for each340

window, the expectation operator yields,341

R̄ =
∑
I , d

R̂I , d · L(I, d)

C̄ =
∑
I , d

ĈI , d · L(I, d) (16)

where R̂I , d and ĈI , d are determined according to (6). Like-342

wise, a window-by-window value for t0 may be determined by343

choosing t̄0 = d̄0/fs , where d̄0 is chosen to maximize L(I, d).344

Then, for mean-subtracted ABP, CBFV, and ICP waveforms,345

Eqn. (1) may be rewritten as346

q̃ (t − t̄0) =
1
R̄

(p̃a(t) − p̃i(t)) + C̄
d

dt
(p̃a(t) − p̃i(t)) (17)

where q̃(t), p̃a(t), and p̃i(t) are mean-subtracted CBFV, ABP,347

ICP, respectively. Taking Fourier transforms and rearranging the348

equation yields349

P̃i(jΩ) = P̃a(jΩ) − R̄ · e−jΩ t̄0

1 + jΩR̄C̄
Q̃(jΩ) (18)

where Q̃(jΩ), P̃a(jΩ), and P̃i(jΩ) are the Fourier transforms of350

q̃(t), p̃a(t), and p̃i(t), respectively, and Ω is the radial frequency.351

We first determine representative wavelets for q̃(t) and p̃a(t) in352

each data window by averaging over the individual heartbeats353

in that window while maintaining a common length across each354

heartbeat. This common length is set to the smallest beat dura-355

tion in the ABP data, and beats exceeding this length are clipped.356

We then compute the discrete Fourier transform (DFT) of the357

wavelets with the transform length set to the number of sam-358

ples in the wavelets. Doing so amounts to performing a discrete359

Fourier series decomposition of periodic signals formed by the360

ABP and CBFV wavelets with each DFT bin corresponding to361

a frequency harmonic [32]. P̃i(jΩ) can thus be evaluated at the362

TABLE I
PATIENT INFORMATION

frequency harmonics by using the DFT output in conjunction 363

with Eqn. (18) such that 364

P̃i(jhΩ0) = P̃a(jhΩ0) − R̄ · e−jhΩ0 t̄0

1 + jhΩ0R̄C̄
Q̃(jhΩ0) (19)

where h = ±1,±2, . . . indicates the frequency harmonic, Ω0 = 365

2πfs/M is the continuous-time periodic frequency for a repeat- 366

ing wavelet of M samples, and P̃a(jhΩ0) and Q̃(jhΩ0) are set 367

to the hth DFT bins of the ABP and CBFV wavelets, respectively. 368

Noise and modeling inaccuracies mean that reliable estimates 369

may not be available for higher harmonics. Instead of fixing the 370

number of harmonics to estimate, we applied a heuristic scheme 371

that enforces monotonicity in the spectral estimates by retain- 372

ing only those harmonics whose spectral magnitude is below the 373

preceding harmonics. Once the harmonics have been selected, 374

the inverse DFT is used to obtain an approximate reconstruction 375

of an ICP wavelet. 376

III. DATA COLLECTION AND PREPROCESSING 377

We used data collected at Boston Children’s Hospital (BCH) 378

between February 2015 and June 2017 as previously reported 379

in [25]. Briefly, the data collection protocols were approved by 380

the Institutional Review Boards at BCH and MIT, and informed 381

consent was obtained from patients or their surrogates prior to 382

data collection. Individual recording sessions typically lasted for 383

nearly twenty minutes during which the rABP, CBFV, and (inva- 384

sive) ICP waveforms were recorded simultaneously. Important 385

metadata, including height differences between the location of 386

ICP and rABP transducers, were also recorded. Data were in- 387

cluded from thirteen patients (4 females, 9 males, aged between 388

2–25 years with a median age of 11 years) who presented with 389

different pathologies including TBI, hydrocephalus, and hem- 390

orrhagic strokes with ICP values ranging from 1 to 25 mmHg. 391

The patient information is further summarized in Table I. 392
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Fig. 5. Three examples of nICP, resistance, and compliance estimates. Top panel: Invasive reference ICP measurements are shown in gray.
Window-by-window average of the reference ICP and nICP values are in black and red, respectively. The nICP estimates had a bias of 0.7, −1.0,
and −0.3 mmHg, standard deviation of error of 1.9, 1.4, and 1.1 mmHg, and RMSE of 2.0, 1.7, and 1.1 mmHg, respectively. Bottom panel: Resistance
(black) and compliance (red) estimates.

We tested our method’s performance on clean data segments393

extracted from the ensemble data. Details of the segment extrac-394

tion process are presented elsewhere [25]. Briefly, CBFV and395

rABP waveform quality was assessed, and segments of noisy396

data were removed before applying a coarse time-alignment397

step between the rABP and the CBFV signals to account – on398

average – for time delays introduced by different measurement399

devices. This was done by computing the cross-correlation be-400

tween rABP and CBFV signals, and selecting the lag with the401

highest cross-correlation coefficient as the desired offset. The402

signals were then resampled to a common 125 Hz to compensate403

for any underlying sampling frequency discrepancies. Finally,404

the baseline rABP was adjusted to account for differences in ICP405

and rABP transducer heights as suggested previously in [24].406

In contrast to [25], we passed the resulting six hours and forty407

minutes of data through an out-of-band-noise removal stage.408

The rABP and CBFV trends were first extracted via a moving-409

average filter. These trends were subtracted from the rABP and410

CBFV signals, respectively, and the resulting detrended signals411

were filtered by a bandpass filter with cutoffs at 0.5 and 16 Hz.412

The trend removed in the first stage was then added back to the413

filter output to restore the original DC levels. The filtered data414

were then passed to our estimation routine that computed nICP415

estimates in non-overlapping twenty-beat windows.416

IV. ICP ESTIMATION RESULTS417

Nearly seven hours of data (1,657 twenty-beat nonoverlap-418

ping estimation windows) were analyzed, and estimates were419

computed in a fully automated manner for reproducibility. The420

results were computed by setting σv = 15 mmHg for the model 421

in (4) to model rapidly changing ICPs. This was done to ensure 422

our method’s generalizability to diverse datasets [31]. 423

Representative examples of the estimation results are shown 424

in Fig. 5. These recordings indicate that our method can generate 425

nICP estimates that are within clinically acceptable accuracy 426

compared to standard invasive methods. 427

Bland-Altman analysis [33] on a per-estimation-window ba- 428

sis (Fig. 6) indicates that our method achieved a mean error 429

(bias) of 0.6 mmHg and RMSE of 3.7 mmHg across the 1,657 430

ICP-to-nICP comparisons, with associated limits of agreement 431

(bias ± 1.96 standard deviation (SD)) of −6.6 to 7.7 mmHg, 432

respectively. Likewise, the comparison on a per-recording basis 433

revealed an estimation bias and RMSE of 0.8 and 3.3 mmHg, 434

respectively, with limits of agreement of −5.5 to 7.1 mmHg. 435

To further gauge our method’s performance, we computed 436

the fraction of nICP estimates below a certain RMSE on a per- 437

record, per-estimation-window, and per-patient basis. This anal- 438

ysis is illustrated in Fig. 8 and indicates that nearly 80% of all 439

our nICP estimates were within ±5 mmHg of the invasive refer- 440

ence ICP measurements, indicating a strong agreement between 441

invasive reference and noninvasive estimates. 442

While not a measure of agreement of two candidate mea- 443

surement approaches [33], the correlation coefficient has his- 444

torically been cited in studies on nICP estimation. Here, we 445

achieved a correlation coefficient of 0.64 for the per-record anal- 446

ysis (Fig. 9). Given the comparatively small SD achieved in our 447

nICP estimates, the value of the correlation coefficient seems 448

limited by the limited range of measured ICP values, rather than 449

pointing to a limitation of the estimation approach [23], [33]. 450
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Fig. 6. Bland-Altman analysis of estimation performance on (a) per-estimation-window and (b) per-recording-window bases. Solid lines indicate
the bias (mean error); dashed lines are the limits of agreement computed as bias ± 1.96 × SD.

Fig. 7. Estimation performance across all thirteen patients. Bars in-
dicate the estimation bias; the unit standard deviations are shown in
gray.

Fig. 8. Fraction of nICP estimates below a specified RMSE in per-
estimation-window (solid), per-record (dotted), and per-patient (dashed)
bases.

To assess our method’s performance in the absence of prior451

information about the ICP, we computed nICP estimates with452

a uniform prior distribution. The estimation performance is453

summarized in Table II, and shows that while the estimation454

Fig. 9. Scatter plot of measured reference and estimated ICP on a
per-record basis. A correlation coefficient of 0.64 was achieved.

TABLE II
ESTIMATION ACCURACY

accuracy decreased, the degree of degradation is not severe 455

enough to render the estimates clinically unusable. Further- 456

more, we also computed the estimation accuracy by disabling 457

the scans over multiple time offsets. The results are summarized 458

in Table III and indicate that scanning over time offsets leads 459

to improved accuracy with and without the Gaussian mixture 460

prior distribution, although the effect is more pronounced when 461

using a uniform prior distribution. 462
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TABLE III
EFFECT OF NOT SCANNING OVER TIME OFFSETS

Fig. 10. Synthetic trend added to CBFV waveforms to determine effi-
cacy of the tracking scheme.

Fig. 11. Example of a plateau wave. Mean ABP (black), CBFV (red),
and ICP (green) are shown. Rise in ICP is accompanied by a drop in
mean CBFV while the mean ABP remains relatively stable. Data courtesy
of Professor Marek Czosnyka, Department of Clinical Neurosciences,
Addenbrooke’s Hospital, University of Cambridge.

To test the tracking scheme’s ability to follow transient463

changes, we added a synthetic trend to the CBFV signals and464

recomputed nICP estimates with the modified CBFV, whilst465

leaving the ABP waveforms unchanged. The synthetic trend is466

shown in Fig. 10, and we expected the nICP to increase in re-467

sponse, thereby mimicking plateau waves [34] (see Fig. 11 for468

an example of a plateau wave recorded in a clinical setting).469

Such plateau waves did not occur in our data. Estimates were470

computed both with tracking and with a static prior distribution471

applied to all data windows in data segments whose duration was472

Fig. 12. Mean (solid) and unit SD bounds (dashed) of nICP estimates
obtained with synthetic trend in CBFV (a) without and (b) with tracking.

longer than that of the five-minute synthetic trend. The mean 473

and unit SD bounds of the resulting nICP estimates are shown 474

in Fig. 12. The figure demonstrates that enabling the tracking 475

scheme led to estimating greater transient changes than with a 476

static prior distribution. 477

ICP pulse pressure estimation – Reference invasive ICP wave- 478

forms recorded with open external drain were excluded in this 479

analysis since the pulsatility of those waveforms was damped 480

due to exposure to atmospheric pressure. This resulted in 1093 481

20-beat data windows, or 4 hours of data. Distributions of differ- 482

ences between the measured and noninvasively determined ICP 483

pulse pressure are shown in Fig. 13. On average, our noninva- 484

sively determined ICP pulse pressures had a bias of−1.2 mmHg, 485

a SD of 3.8 mmHg, and a RMSE of 4.0 mmHg, suggesting that 486

our estimates were close to invasively determined values, albeit 487

on a small dataset. 488

V. DISCUSSION 489

Comparison with invasive ICP measurement modalities – In- 490

vasive ICP monitoring modalities include external ventricular 491

drains (EVDs), commonly regarded as the clinical gold stan- 492

dard, integrated (micro-transducer) parenchymal sensing de- 493

vices, such as the Camino or Codman sensors, and epi- or 494

sub-dural pressure measurement probes. The latter are consid- 495

ered less reliable compared to parenchymal devices [11], [35], 496

[36] and have largely been discontinued in neurocritical care. 497

Performance analyses of parenchymal micro-transducers have 498
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Fig. 13. Distribution of differences between estimated and reference
ICP pulse pressure per estimation window. The bias (solid line) is
−1.2 mmHg and 2 SD limits (dashed lines) are −8.8 mmHg and
6.4 mmHg.

also been reported in the literature [11]. Lescot et al. [37], for499

example, reported that in a cohort of fifteen patients, the Cod-500

man sensor had an ensemble bias of 0.3 mmHg with limits of501

agreement of−6.7 and 7.1 mmHg, relative to simultaneous EVD502

measurements. Other studies reported similar performance met-503

rics for two simultaneous invasive ICP measurements [38]. Our504

system achieved comparable performance characteristics (bias505

of 0.6 mmHg and limits of agreement of −6.6 and 7.7 mmHg).506

Radial ABP measurement was the only (minimally) invasive507

aspect of our approach and was used because these measure-508

ments are readily available at the bedside in neurocritical care.509

The risk of infection from arterial catheters is reported to be510

far less than that associated with EVDs. O’Horo et al. [39],511

for instance, have reported infection rates of 1.5% in femoral512

arterial lines with 1.9 times greater risk of infection at femoral513

sites compared to radial sites. In contrast, infection rates of 5%514

[8] and 10% [9] have been previously reported in EVDs. Thus,515

our approach has a potentially lower risk of infection than inva-516

sive ICP measurement methods. Future use of noninvasive ABP517

monitors will eliminate any residual infection risks associated518

with our method [31].519

ICP pulse pressure estimation – The obtained results indicate520

that our noninvasive procedure may also be used to determine521

ICP pulsatility. The slight negative ICP pulse pressure estima-522

tion bias may be attributed to estimation of limited, often fewer523

than two, harmonics. The estimation procedure, however, is524

training-free since it uses the likelihood distribution (instead525

of the posterior distribution) in a model-based fashion. It in-526

volves elementary computations and can thus be implemented527

in real-time with minimum computational burden. Since a vari-528

able number of harmonics are estimated per data window, it529

is not always possible to conduct a thorough analysis of the530

waveform morphology.531

Other attempts of noninvasive determination of ICP pulsatil-532

ity include the use of transcranial acoustic signals in conjunc-533

tion with pretrained statistical models [15], use of pre-trained534

transfer functions between ICP and aortic blood pressure [40],535

Fig. 14. Histogram of reference ICP values across all estimation win-
dows in our data.

and application of an iterative ensemble Kalman filter to a mul- 536

tiscale model of intracranial dynamics [26]. These approaches 537

involve use of pre-trained models and associated parameters that 538

may not generalize over larger patient populations. The pulse 539

pressure information obtained from our method, in contrast, 540

does not involve pre-training. 541

Features of our approach – Our proposed method yields 542

accurate and patient-specific nICP estimates by combining a 543

simple model of cerebral hemodynamics with an easily inter- 544

pretable prior distribution of ICP values in a realtime, compu- 545

tationally straightforward manner. Doing so obviates the need 546

to employ sophisticated multi-parameter models that describe 547

complex cerebrovascular behaviors [41], [42] whose parame- 548

ters are difficult to identify in a simple, noninvasive, robust, and 549

patient-specific manner. Likewise, our proposed approach by- 550

passes the need to resort to statistical learning frameworks that 551

require rich datasets across a multitude of clinical conditions for 552

robust training. 553

The proposed estimation framework differs from classical 554

Bayesian system identification approaches that utilize iterative 555

Markov chain Monte Carlo methods (see [43], [44]) and that 556

may therefore not be feasible for real-time computation. More- 557

over, our prediction model allows for a simple method to fuse 558

predicted and observed ICP changes. More sophisticated predic- 559

tion models may be used. Increasing the complexity, however, 560

may come at the cost of more computationally involved fusion 561

methods. 562

We employed a prior distribution that only coarsely represents 563

the ICP values in our dataset (see Fig. 14). Notably, we assigned 564

greater probabilities to ICP values both below 5 mmHg and 565

above 30 mmHg than the actual proportion of such values in our 566

data. That our approach still achieved an RMSE below 4 mmHg 567

is therefore highly encouraging. To us, this indicates that our 568

method can potentially yield comparable accuracy to invasive 569

measurements when some prior information about subjects’ ICP 570

ranges can be provided to the system. The system’s performance 571

in absence of prior information does not degrade significantly, 572

as is indicated by the results achieved with a uniform prior 573

distribution. This points towards the method’s applicability to 574
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cases where no a priori information may be available about575

patients’ ICP values.576

At present, we have employed a simplistic model of temporal577

ICP evolution. Filtering our ICP change estimates using pre-578

dictions from this model yielded improved performance, whilst579

simultaneously relieving dependence on the initial prior distri-580

bution. The reduced dependence on the initial prior information581

will be important in monitoring subjects’ ICP over long dura-582

tions, and through large swings of ICP, as indicated by Fig. 12.583

Kashif et al. [23] previously proposed the two-element584

continuous-time ICP model used here, and also developed an585

associated nICP estimation scheme. The authors reported an586

ensemble bias of 1.6 mmHg with an SDE of 7.6 mmHg in587

data from TBI patients with significant underlying ICP vari-588

ability. They also averaged the nICP estimates obtained from589

CBFV signals recorded simultaneously from left and right mid-590

dle cerebral arteries, and reported that this averaging resulted in591

a reduced SDE of 5.9 mmHg. They were, however, unable to592

account for the hydrostatic pressure offset between rABP and593

ICP measurements as they analyzed archived data and did not594

have access to the height differences between the ICP and rABP595

pressure transducers. Also, their data were recorded solely from596

adult TBI patients. Building on this work, Fanelli et al. [25]597

introduced an automated signal quality assessment stage in the598

model-based estimation scheme of Kashif et al. and automated599

all pre-processing steps, including time-alignment of the ABP600

and CBFV waveforms. Their method, however, still remained601

sensitive to temporal alignment of the input waveforms. They602

collected data from a heterogeneous pediatric patient population603

and reported nICP estimation bias and RMSE of 1.0 mmHg and604

5.2 mmHg, respectively.605

Our method differs from these prior approaches in several606

aspects. Sensitivity to time alignment is overcome by forming a607

likelihood distribution over several time offsets. Our method in-608

cludes a strategy to take prior information about a subject’s ICP609

into account whilst retaining the interpretability and computa-610

tional simplicity afforded by the Kashif model. We incorporate611

temporal evolution of the mean ICP via our tracking framework612

– a facility not afforded by the previous work. While we did613

not have access to simultaneous bilateral CBFV recordings, our614

method might achieve better performance characteristics in such615

scenarios if averaging similar to that used by Kashif et al. were616

applied. We demonstrate that estimates of the mean ICP can617

be obtained with accuracies approaching those of gold-standard618

invasive methods. Moreover, our proposed method also deter-619

mines the ICP pulse pressures noninvasively, in a training-free620

manner – a feature not previously developed in the prior work.621

Contributions – The contributions of this present work in-622

clude developing a model-based nICP estimation framework623

that encounters unknown physiologically-induced time offsets624

between rABP and CBFV signals. An attractive feature of our625

approach is that it retains its interpretability due to the underly-626

ing physiologic model – a facility not provided by pure statistical627

learning approaches to nICP estimation. Additionally, we have628

introduced a simple AR model of ICP dynamics that helps in629

tracking ICPs over long recording durations without overly re-630

lying on the prior distribution employed in the initial stage of the631

method. For each data window, our method generates a proba- 632

bility distribution of ICP values, that can potentially be used to 633

determine estimation-confidence metrics. We demonstrate that 634

the likelihood distribution can also be used to determine esti- 635

mates of the ICP pulse pressure in a patient-specific manner. 636

Our system does not require calibration to invasive ICP mea- 637

surements. It can thus be used as a screening tool for identifying 638

patients suffering from elevated ICP without resorting to inva- 639

sive procedures such as lumbar punctures. 640

In addition to monitoring patients suffering from neurological 641

diseases, our approach can also be useful in monitoring intra- 642

operative cerebral perfusion and autoregulation, for example. 643

Both inadequate and excessive cerebral perfusion during surgi- 644

cal procedures has been shown to be a cause of post-operative 645

delirium [45]. Surgical procedures such as coronary artery by- 646

pass grafting typically do not employ concurrent invasive ICP 647

monitoring, and thus CPP cannot be directly measured. CPP 648

derived from our nICP estimates can potentially be used to ame- 649

liorate this problem. Such clinical translation of our method will 650

require implementing it for real-time operation. This is a feasi- 651

ble prospect because the method employs a set of deterministic, 652

causal mathematical operations. 653

Limitations and future work – At present, we used a preset 654

prior distribution. However, in a clinical scenario, physicians 655

could be allowed to modify the distribution at the bedside using 656

their insight. Additional work may focus on testing our proposed 657

method on a larger dataset comprising subjects with additional 658

pathologies and larger variations and transient changes in ICP. 659

We have used routinely measured rABP recordings for estimat- 660

ing ICPs in our clinical dataset, and future validation of the 661

method could also involve noninvasive blood pressure moni- 662

tors. Work may also focus on harnessing information in the 663

estimated model coefficients, αm and βm , or equivalently Rm 664

and Cm , both for monitoring a subject’s cerebral autoregula- 665

tion status, and for assessing nICP estimation confidence on a 666

window-by-window basis. 667

VI. CONCLUSION 668

Continuous nICP estimation can benefit a large number of 669

patients that have traditionally been excluded from ICP moni- 670

toring due to the current invasiveness of the measurement. The 671

nICP estimation framework proposed in this paper attempts to 672

overcome challenges associated with model-based nICP estima- 673

tion methods. Several possible time offsets between the rABP 674

and CBFV are considered, which helps address the challenge 675

posed by unknown (and patient-specific) time offsets between 676

these signals. Estimation is performed within a Bayesian frame- 677

work, which helps increase the method’s resilience to structured 678

errors that may be introduced, for instance, by differences be- 679

tween rABP and cABP morphology, and also to unstructured 680

errors due to signal noise and motion artifacts in recorded data. 681

Moreover, ICP pulse pressure amplitudes are determined in a 682

patient-specific manner. It is hoped that this work will pave the 683

way towards developing a reliable, continuous, realtime, accu- 684

rate, and fully noninvasive ICP monitoring device to improve 685

neurocritical care across the world. 686
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