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Dynamic Estimation of Cardiovascular State from
Arterial Blood Pressure Recordings

Taylor E. Baum, Elie Adam, Christian S. Guay, Gabriel Schamberg, Mohammadreza Kazemi, Thomas Heldt, and
Emery N. Brown

Abstract— Real-time estimation of patient cardiovascular
states, including cardiac output and systemic vascular resis-
tance, is necessary for personalized hemodynamic monitor-
ing and management. Highly invasive measurements enable
reliable estimation of these states but increase patient risk.
Prior methods using minimally invasive measurements reduce
patient risk but have produced unreliable estimates limited due
to trade-offs in accuracy and time resolution. Our objective was
to develop an approach to estimate cardiac output and systemic
vascular resistance with both a high time resolution and high
accuracy from minimally invasive measurements. Using the
two-element Windkessel model, we formulated a state-space
method to estimate a dynamic time constant – the product of
systemic vascular resistance and compliance – from arterial
blood pressure measurements. From this time constant, we
derived proportional estimates of systemic vascular resistance
and cardiac output. We then validated our method with a swine
cardiovascular dataset. Our estimates produced using arterial
blood pressure measurements not only closely align with those
using highly invasive measurements, but also closely align
when derived from three separate locations on the arterial tree.
Moreover, our estimates predictably change in response to
standard cardiovascular drugs. Overall, our approach produces
reliable, real-time estimates of cardiovascular states crucial for
monitoring and control of the cardiovascular system.

Index Terms— Arterial blood pressure, cardiac output, esti-
mation, state-space, systemic vascular resistance, Windkessel
model.

I. INTRODUCTION

REAL-TIME monitoring of a patient’s cardiovascular sys-
tem in the operating room (OR) and intensive care unit

(ICU) is necessary for personalized hemodynamic manage-
ment. Poorly managed perioperative hypotension (low blood
pressure) and hypertension (high blood pressure) can lead to
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severe postoperative organ dysfunction [1]–[4]. Hypotension or
hypertension can originate from changes in systemic vascular
resistance (R), cardiac output (CO) or some combination of
both [5]–[8]. Despite similar effects on blood pressure, changes
in R or CO require different treatments. For example, a de-
crease in resistance to blood flow (R) leads to hypotension and
treatment requires vasoconstrictors. A decrease in the amount
of blood pumped from the heart (CO) also leads to hypoten-
sion while treatments require either positive inotropic drugs,
intravenous fluid boluses or interventions to relieve obstruction
of blood flow into or out of the heart. Selecting the incorrect
treatment can have severe consequences. For example, treating
hypotension due to heart failure with pure vasoconstrictors
can further decrease cardiac output and worsen end-organ
perfusion. It then becomes essential to monitor R and CO
in real time for appropriate hemodynamic management.

The cardiovascular states R and CO can only be measured
directly using highly invasive techniques. The most common
measurement method, thermodilution, requires a pulmonary
artery catheter placed into the heart [9]. This intervention
greatly increases risks of bleeding, infection, arrythmias, tri-
cuspid valve damage, right ventricular perforation and pul-
monary artery rupture [10]. Such risks often render the col-
lection of highly invasive measurements clinically unsuitable
[11], [12]. As a result, estimation methods using minimally
invasive measurements have been proposed [13]–[18]. Some
prior methods use arterial blood pressure (ABP) and the two-
element Windkessel model [19] to estimate R and CO from a
dynamic time constant: 𝜏 = RC where C is arterial compliance
[13]–[16]. However, these prior methods are limited due to trade-
offs in time resolution and accuracy of 𝜏 estimates. For example,
Simon et al. estimated 𝜏 through a simple exponential fit to the
diastolic decay of each ABP pulse [13]. With this method, they
achieved beat-by-beat resolution but sacrificed accuracy. Others
sought to improve accuracy by incorporating a longer segment
of ABP into a single estimate but sacrificed time resolution
as a result [14]–[16]. Some of these prior methods then used
their 𝜏 estimates to derive proportional estimates of CO [14]–
[16]. These estimates are limited even further due to simplifying
assumptions that disregard the full dynamics of the two-element
Windkessel model. Overall, such methods – and methods using
minimally invasive observations in general – produce unreliable
estimates [20], [21], resulting in conflicting support for their
clinical use [22], [23].

Using the two-element Windkessel model, we developed an
approach that addresses the above limitations and allows us to
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Fig. 1. Illustration of Physiological Model. A. The two-element Windkessel model, which models arterial blood pressure (ABP) as an RC-circuit receiving
blood flow from the heart, and its physiological parallels in humans [24]. Components of this model include aortic flow (AF) into the system as 𝒇 (𝒕 ) , ABP as
𝒑 (𝒕 ) , arterial resistance from the microcirculation as R and compliance of large arteries, with primary contributions from the aorta, as C. The time constant of
this model is 𝝉 = 𝑹𝑪. We highlight three locations of arterial catheterization (femoral, brachial and central), as analog locations were used in the experimental
swine dataset. B. In vivo swine central ABP (top) and AF (bottom) with 𝝉 ≈ 1. C. In vivo swine central ABP (top) and AF (bottom) with 𝝉 ≈ .5. D. (top)
Simulation of the Windkessel Model forward in time with 𝑹 = 1 and 𝑪 = 1 from 0 ≤ 𝒕 < 10 and then 𝑪 = 1 and 𝑹 = .5 from 10 ≤ 𝒕 < 20 where 𝒕 is time.
(bottom) Comparison of the exponential decay of one beat for 𝑪 = 1 and 𝑹 = 1 (light green) versus 𝑪 = 1 and 𝑹 = .5 (dark green).

estimate R and CO proportionally in real time. This approach
avoids independence assumptions (i.e., that R and C are not
dynamically interlinked) through use of the full dynamics of the
two-element Windkessel model. First, using ABP, we developed
a method to estimate proportional R (𝜏). We achieved this by
constructing a state-space model of 𝜏, with 𝜏 as the state and
the diastolic component of each ABP pulse as observations. Our
method improves upon previous techniques by producing beat-
by-beat estimates of 𝜏 with reduced noise through incorporation
of ABP history outside of the current beat. Second, also using
ABP, we developed a method to estimate proportional CO
(CO/C). This method combines the estimates of proportional R
into another state-space model that also achieves beat-by-beat
estimates with reduced noise. Third, using aortic flow (AF) and
ABP, we developed a method to estimate R and C separately.
From this, we have direct measurements of CO from AF and
estimates of R and C. These more-informed estimates were used
for comparison to our proportional R and CO estimates from
ABP.

Through application of our approach to a previously collected
swine dataset [14], we find three major results. First, we find that
our minimally invasive proportional R and CO estimates align
with our highly invasive estimates using ABP and AF for each
swine and each location. Second, we find that our proportional
R and CO estimates within a swine often align across multiple
ABP recording locations, emphasizing the conservation of

these states throughout the arterial tree. Third, we find that
our proportional R and CO estimates respond predictably
to commonly used cardiovascular drugs. As validated with
swine data, we provide improved methods to estimate clinically
integral cardiovascular states describing vascular and cardiac
function.

Paper structure: In Section II, we present our results as
a sequence of methodological developments and subsequent
findings from applying our methods to a previously collected
swine dataset. In Section III, we discuss the benefits and
limitations of our approach along with this work’s clinical
implications. In Section IV, we conclude this paper. In the
Appendix, we present the materials and methods of this work in
full mathematical detail. In the Supplementary Information are
additional details.

II. RESULTS

A. A cardiovascular state can be characterized
independently of its location on the arterial tree by the time
constant of a circuit model of the cardiovascular system

We built on the two-element Windkessel model [19] to
characterize a cardiovascular state from arterial blood pressure
dynamics. In Figure 1A, we illustrate the circuit representation
of the two-element Windkessel model and its physiological
parallels in humans. This model represents the cardiovascular
system through two main mechanistic components: R and C.
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Fig. 2. Method to Estimate 𝝉 from Aortic Flow (AF) and Arterial Blood Pressure (ABP). A. We used the dynamic equation from the two-element
Windkessel model to generate estimates of 𝝉 using AF, ABP and an approximate derivative of pressure. B. Example in vivo swine AF ( 𝒇 (𝒕 )). C. Example in
vivo swine ABP (𝒑 (𝒕 )). D. Example in vivo derivative of swine ABP ( ¤𝒑 (𝒕 )).

The C component represents elasticity of the blood vessels,
with primary contributions from the walls of major arteries.
The R component represents the forces opposing blood flow,
with major contributions from the arterial microcirculation (i.e.,
arterioles, capillaries and venules). Both of these contribute
to arterial pressure, and the two-element Windkessel model
captures their contribution by an RC circuit.

A pulse of blood volume (Fig. 1B,C bottom) into this RC
model immediately meets a vascular resistance that opposes that
flow. This inflates the vessels and engages their compliance (i.e.,
capacitance). The compliant vessels then push this flow through
the vascular resistance, giving rise to blood pressure (i.e., voltage
drop across the resistor). This pressure decays with time as blood
crosses from arteries to veins (Fig. 1B,C top). The two-element
Windkessel model describes this decay in blood pressure as
exponential with a rate governed by 𝜏 (Fig. 1D). We used this
time constant as the cardiovascular state to estimate. Changes
in 𝜏 directly modulate blood pressure. One can formalize this
relationship with a differential equation (Eq. 1) whose solution
is a model of blood pressure:

¤𝑝(𝑡) + 1
𝑅𝐶

𝑝(𝑡) = 1
𝐶

𝑓 (𝑡) (1)

where 𝑓 (𝑡) in [L ·min−1] is the volumetric inflow into the blood
vessels from the heart, 𝑝(𝑡) in [mmHg] is blood pressure, C is
in [L · mmHg−1] and R is in [mmHg · min · L−1].

The two-element Windkessel model is often described to
model blood pressure in the aorta. To estimate 𝜏 peripherally, we
extended the two-element Windkessel model to incorporate pe-
ripheral vasculature (Fig. S1). While R and C can change along
the arterial tree, we find that, under reasonable assumptions (see
Supplementary Information, Sec. A) 𝜏 is preserved throughout.
Our finding suggests that 𝜏 is a global cardiovascular state.

B. The time constant (proportional resistance) can be
estimated using aortic flow and arterial blood pressure

We developed a method to estimate 𝜏 using ABP and highly
invasive measurements of AF. Our method separately estimates
R and C to get 𝜏 = 𝑅𝐶 as illustrated in Figure 2. Previous
work describes common procedures to separately estimate R
and C using insight from the two-element Windkessel model
at every beat 𝑘 [14], [16], [25]. In this prior work, compliance
is computed as stroke volume (i.e., amount of blood volume
pumped from the heart) over pulse pressure (i.e., difference
between systolic and diastolic pressure) for each pulse:

𝐶𝑘 =

∫ 𝑜𝑘+𝑇𝑓

𝑜𝑘
𝑓 (𝑡)𝑑𝑡∫ 𝑜𝑘+𝑇𝑓

𝑜𝑘
¤𝑝(𝑡)𝑑𝑡

(2)

where 𝑜𝑘 is the time of onset of the blood pressure pulse in [sec]
and 𝑇 𝑓 is the duration of systole (i.e., positive flow from the
heart) in [sec]. Also in this prior work, resistance is computed
as the mean pressure divided by the average aortic flow for the
𝑘-th pulse:

𝑅𝑘 = 𝑇−1
𝑘

∫ 𝑜𝑘+𝑇𝑘

𝑜𝑘

𝑝(𝑡)𝑑𝑡 ·
(
𝑇−1
𝑘

∫ 𝑜𝑘+𝑇𝑘

𝑜𝑘

𝑓 (𝑡)𝑑𝑡
)−1

(3)

where 𝑇𝑘 is the period of the heart beat in [sec]. Systemic
vascular resistance and compliance are interlinked, however, as
dictated by the two-element Windkessel model. As such, an
estimate of R and C using this approach leads to an erroneous
result.

Instead, to estimate R and C together, we integrated Equa-
tion 1 over integration period 𝑡0 to 𝑡1, yielding:∫ 𝑡1

𝑡0

𝑓 (𝑡)𝑑𝑡 = 1
𝑅𝑘

∫ 𝑡1

𝑡0

𝑝(𝑡)𝑑𝑡 + 𝐶𝑘

∫ 𝑡1

𝑡0

¤𝑝(𝑡)𝑑𝑡 (4)

By integrating over two periods within beat 𝑘 – the entire pulse
and the systolic period – we have two equations. The solution to
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Fig. 3. Method to Estimate 𝝉 from Arterial Blood Pressure (ABP). We built a graphical model of 𝝉 in relation to samples of ABP and then built a Kalman
filter around this model to learn 𝝉 at each beat 𝒌. A. Modeled ABP from the two-element Windkessel Model. B. Modeled aortic flow as impulses of stroke
volume, 𝚫𝑽𝒌 . C. Graphical model of 𝝉𝒌 related to ABP (𝒑 (𝒕 )) observations, v𝒌 . D. Example in vivo ABP observations. E. Modeled ABP observations. We
built a Kalman filter, constructed from two-element Windkessel model assumptions, to get an estimate of 𝝉𝒌 from the observations from each beat.

these two equations provides beat-by-beat estimates of R, C and,
subsequently, 𝜏 = 𝑅𝐶 that are dynamically sound with respect
to the two-element Windkessel model.

Notice, if we set the integration bounds to be over the full
beat in Equation 4 and we set 𝑅 = 0, we get Equation 2. With
the same integration bounds, if we set 𝐶 = 0, we get Equation 3.

C. Proportional resistance can be estimated using arterial
blood pressure only

We developed a state-space method to estimate 𝜏 using only
ABP. Our method (Fig. 3A) consists of a single hidden state (i.e.,
the time constant, 𝜏) that is evolving with time, as described by
our state equation. We estimate this hidden state from ABP
observations, as described by our observation equation.

As flow into the aorta stops during the diastolic period
(Fig. 3B), we expect a decay with a rate defined by the time
constant, 𝜏, which follows the dynamics of the two-element
Windkessel model (Fig. 3C). We formalize this relation between
the hidden cardiovascular state of interest, 𝜏𝑘 , and observations
of the ABP waveform during diastole, v𝑘 , as:

v𝑘 = 𝑎𝑘 exp
(
− t𝑘
𝜏𝑘

)
(5)

where 𝑘 indexes the heart beats and t𝑘 corresponds to the time
value in [sec] elapsed from the first diastolic ABP observation.
Additionally, we assumed 𝑎𝑘 to be the initial observation of v𝑘

(Fig. 3D,E).
We derive a set of linear observation equations for every

pulse from Equation 5 (as detailed in the Appendix) and

incorporate noise. We design this noise such that our confidence
in observations at the beginning of the pulse decay is less.
This is because our observation model assumes an absence of
flow into the arterial vasculature during diastole, and flow is
often non-zero around the closure of the aortic valve (Fig. 2B).
Additionally, there is evidence that the influence of wave
reflection on the shape of ABP pulses is smallest at end-diastole
and early systole [26]–[28].

The hidden state, 𝜏, is not fixed and is expected to vary as a
function of time. As such, we assumed that 𝜏𝑘 follows a Gaussian
random walk:

𝜏𝑘+1 = 𝜏𝑘 + 𝜂𝑘 (6)

where 𝜂𝑘 ∼ 𝑁 (0, 𝜎2
𝜂) and each 𝜂𝑘 is independent. The state

noise variance, 𝜎2
𝜂 , defines how quickly 𝜏𝑘 can change.

To obtain a real-time estimate of 𝜏 from ABP, we implemented
a Kalman filter using Equation 5 as our observation equation
and Equation 6 as our state equation. Our approach enables us
to obtain a maximum a posteriori 𝜏𝑘 estimate, 𝜏[𝑘 |𝑘 ] , for every
beat which incorporates prior history using minimally invasive
ABP observations. The mathematical details of our algorithm
are provided in the Appendix.

D. Proportional resistance estimates using arterial blood
pressure are beat-by-beat with reduced noise

Our estimation method using ABP produces a smooth trajec-
tory of beat-by-beat estimates of 𝜏, where each beat estimate
has an explicit credibility interval. Our algorithm takes an ABP
segment as input (Fig. 4A, top) and provides an estimated 𝜏
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Fig. 4. Benefits of Kalman Filter for Estimation of 𝝉. A. (top) Segment of central ABP waveform from experiment 1. (bottom) Corresponding Kalman 𝝉
estimates, along with exponential fit 𝝉 estimates lacking history dependence. B. Zoomed in segment of A. emphasizing Kalman 𝝉 estimates’ resistance to
breathing artifacts with 𝝉 ≈ .6. C. Zoomed in segment of A. emphasizing Kalman 𝝉 estimates’ responsiveness to rapid changes. D. Zoomed in segment of A.
emphasizing Kalman 𝝉 estimates’ resistance to breathing artifacts with 𝝉 ≈ .8. E. (top) Segment of brachial ABP with potential prominent backward reflected
pressure waves from experiment 2. (bottom) Corresponding Kalman 𝝉 estimates, along with exponential fit 𝝉 estimates lacking history dependence.

trajectory (Fig. 4A, bottom). We compare this to 𝜏 estimates
obtained independently at each beat (Fig. 4A, bottom, in red)
by fitting an exponential curve to the diastolic portion of each
ABP pulse. A standard exponential fit is a natural first approach
to estimate 𝜏 [13] but is highly susceptible to noise and assumes
equal confidence in all ABP samples.

Due to our observation equation noise design (which we argue
is more appropriate in Section IIC), our Kalman filter performs a
different computation than smoothing a standard exponential fit.
This can lead to an observed bias where our Kalman estimates
do not track the center of standard exponential fits during stable
periods (Fig. 4A, bottom, final 60 seconds). We emphasize that
this bias is not equivalent to poor performance, and there would
not be such a bias when comparing our Kalman estimates to
exponential fits with our same noise assumption.

We find that our Kalman estimates are responsive to quick
changes in 𝜏 (Fig. 4C). We emphasize that the sensitivity
of 𝜏 estimates to rapid changes can be tuned by adjusting
the model’s noise terms. We also find that by incorporating
history dependence, our algorithm filters out noise artifacts
related to breathing (observe the oscillations in the red trajectory

in Figure 4A-D) or prominent backward reflected pressure
waves in peripheral catheters [26]–[28] (observe the variance
in exponential fits in Figure 4E). This leads to a smooth state
estimate trajectory (Fig. 4A-E).

In general, our Kalman estimates improve upon standard
exponential fits by amplifying the general changes of 𝜏,
emphasizing ABP observations we are more confident in and
minimizing the noise present in these ABP observations.

E. Proportional resistance estimates using arterial blood
pressure track estimates using additional aortic flow
measurements

The time constant, 𝜏 = 𝑅𝐶, can be estimated from ABP and
AF by separately computing R and C using the two-element
Windkessel model dynamics (Fig. 2). Our state-space method
(Fig. 3) enables us to estimate 𝜏 from just ABP, bypassing the
use of highly invasive AF measurements. It then remains to
check whether 𝜏 estimates derived with ABP agree with those
derived with ABP and AF. As such, we applied both methods
to a previously collected swine dataset with six swine and
compared the resultant 𝜏 estimates. For each swine, we produced
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Fig. 5. Experiment 1: Proportional R (𝝉) Estimation Results. Accompanying each estimate using arterial blood pressure (ABP) is the calculated 95%
credibility interval of 𝝉𝒌 at beat 𝒌. A. Comparison of the beat-by-beat estimate of 𝝉 using femoral ABP versus the beat-by-beat estimate of 𝝉 using femoral
ABP and aortic flow. B. Same as A. but using central ABP. Areas of lighter blue indicate that the estimate using ABP was derived from a central ABP pulse
with a prominent dicrotic notch. C. Same as A. but using brachial ABP. D. Agreement of our Kalman estimates using central, brachial or femoral ABP. Once
again, areas of lighter blue indicate that the estimate using ABP was derived from a central ABP pulse with a prominent dicrotic notch.

estimates using three ABP recording locations: central, femoral
and brachial. In every swine, we find that the estimates from
ABP closely align with estimates derived using AF for central
(Fig. 5A), femoral (Fig. 5B) and brachial (Fig. 5C) ABP
recording locations. Summary statistics of these results are in
Table I. We present full 𝜏 estimation results (Figs. S2-S6) and
corresponding summary statistics for every experiment (Table
S1) in the Supplementary Information.

TABLE I
SUMMARY STATISTICS OF ALIGNMENT BETWEEN ABP-DERIVED 𝝉𝒑

AND ABP-AF-DERIVED 𝝉𝒑, 𝒇 PROPORTIONAL R ESTIMATES AND
BETWEEN 𝝉𝒑 FROM DIFFERENT CATHETER LOCATIONS (FEMORAL,

BRACHIAL OR CENTRAL). WE PRESENT THE PEARSON CORRELATION

COEFFICIENT, 𝒓 , AVERAGE ABSOLUTE PERCENT ERROR, AAPE AND

ROOT MEAN SQUARED ERROR NORMALIZED BY A MEAN OF THE DATA,
𝑵𝑹𝑴𝑺𝑬𝝁 .

r AAPE NRMSE𝜇

Femoral 𝜏𝑝 vs. 𝜏𝑝, 𝑓 .91 10 % .14
Brachial 𝜏𝑝 vs. 𝜏𝑝, 𝑓 .89 17 % .19
Central 𝜏𝑝 vs. 𝜏𝑝, 𝑓 .95 8 % .11

Femoral vs. Central 𝜏𝑝 .98 8 % .08
Central vs. Brachial 𝜏𝑝 .94 13% .05

Femoral vs. Brachial 𝜏𝑝 .93 16 % .58

These experiments only measured flow into the aorta, not
flow into the location of catheterization. To use this information
for estimation with peripheral – femoral and brachial – ABP,
we extended the two-element Windkessel model to incorporate
different vascularization (Fig. S1). By assuming that the ma-
jority of arterial resistance comes from the microcirculation
and each peripheral location of catheterization is prior to
the microcirculation, the flow into the aorta can be used to
estimate R and C from peripheral locations (see Supplementary
Information, Sec. A).

F. Proportional resistance estimates derived from central
and peripheral catheters align in multiple experiments

Clinically, it is desirable to estimate cardiovascular states
peripherally to minimize invasiveness. To assess if 𝜏 can be
estimated peripherally, we examined whether the brachial or
femoral ABP-derived 𝜏 estimates agree with estimates derived
from central ABP. Our prior analysis supports agreement
of these estimates (Supplementary Information, Sec. A). We
emphasize that the noise parameters of our Kalman filters were
equivalent regardless of recording location.
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In experiment 1, we find that the estimates derived from
brachial, femoral and central ABP closely align (Fig. 5D). This
alignment mostly extends to the remaining experiments (Figs.
S2-S6). Specifically, we find that there is total alignment in
2 experiments (Figs. 5 and S5) and majority alignment in 2
additional experiments (Figs. S3 and S6). We present summary
statistics of this result for experiment 1 (Table I) and for all
experiments (Table S2) in the Supplementary Information.

In the remaining 2 experiments, there is a more prominent
discrepancy between estimates derived from different locations
(Figs. S2 and S4). We attribute these discrepancies to explicable
morphological alterations in central ABP (see Supplementary
Information, Sec. B) and measurement artifacts in peripheral
ABP (see Supplementary Information, Sec. C). When there is
presence of a prominent dicrotic notch in central ABP (Fig.
S7), increased 𝜏 estimates as compared to peripheral ABP-
derived estimates are observed. In experiment 4, the femoral
ABP-derived estimates increase rapidly at about 8 minutes into
the experiment most probably because of a bubble in the fluid-
filled catheter or a similar artifact. This hypothesis is supported
by analysis of a circuit modeling the impact of a bubble in a
fluid-filled catheter (Fig. S8) and evidence presented in Figure
S9.

G. Proportional resistance estimates enable estimation of
proportional cardiac output

The time constant not only directly contains information about
R, but also can be used to derive information about CO. Through
use of the dynamic equation of the two-element Windkessel
model (Eq. 1), we derived an estimate of proportional CO
(CO/C) using either just ABP or AF and ABP. To derive our
estimates of proportional CO using AF and ABP, we simply
averaged AF over a pulse and divided this average by our
estimates of C using ABP and AF. For estimates using just ABP,
we used Eq. 4 with integration bounds over the full beat (i.e.,
from 𝑜𝑘 to 𝑜𝑘 +𝑇𝑘) where each side of the equation was divided
by 𝑇𝑘 . We then solved for proportional CO at every beat using
ABP measurements and ABP-derived 𝜏 estimates where CO𝑘

is the average flow per beat 𝑘 in [L · min−1]. The mathematical
details of this method are provided in the Appendix.

We find that ABP-derived estimates of proportional CO
closely align with estimates of proportional CO derived using
highly invasive measurements of AF (Fig. 6A-C). Additionally,
proportional CO estimates derived from brachial and femoral
ABP agree with estimates derived from central ABP (Fig. 6D),
as supported by previous analysis in the Supplementary Infor-
mation, Sec. A. Summary statistics of these results are presented
in Table II. We present full CO/C estimation results (Figs. S2-
S6) and corresponding summary statistics for every experiment
(Tables S3-S4) in the Supplementary Information.

H. Proportional resistance and cardiac output estimates
change predictably in response to common cardiovascular
drugs

As is emphasized in current clinical decision-making prac-
tices, changes in ABP are dependent on changes in cardiac
function (captured by CO) and changes in vascular function

TABLE II
SUMMARY STATISTICS OF ALIGNMENT BETWEEN ABP-DERIVED

(CO/C)𝒑 AND ABP-AF-DERIVED (CO/C)𝒑, 𝒇 PROPORTIONAL CO
ESTIMATES AND BETWEEN (CO/C)𝒑 FROM DIFFERENT CATHETER

LOCATIONS (FEMORAL, BRACHIAL OR CENTRAL). WE PRESENT THE

PEARSON CORRELATION COEFFICIENT, 𝒓 , AVERAGE ABSOLUTE

PERCENT ERROR, AAPE AND ROOT MEAN SQUARED ERROR

NORMALIZED BY A MEAN OF THE DATA, 𝑵𝑹𝑴𝑺𝑬𝝁 .

r AAPE NRMSE𝜇

Femoral (CO/C)𝑝 vs. (CO/C)𝑝, 𝑓 .94 7 % .11
Brachial (CO/C)𝑝 vs. (CO/C)𝑝, 𝑓 .79 13 % .30
Central (CO/C)𝑝 vs. (CO/C)𝑝, 𝑓 .92 8 % .11

Femoral vs. Central (CO/C)𝑝 .93 17 % .22
Central vs. Brachial (CO/C)𝑝 .85 11% .17

Femoral vs. Brachial (CO/C)𝑝 .88 23 % .28

(captured by R). Our prior results provide information of both
cardiovascular states; more specifically, they can be viewed as
proportional estimates of R (𝜏 = RC) and CO (CO/C).

To further support clinical usefulness of these proportional
estimates in pharmacological decision-making, we analyzed
segments of their normalized changes in response to five
drugs commonly used in clinical medicine: phenylephrine
(PE), dobutamine (DB), esmolol (ES), nitroglycerin (NI) and
fentanyl (FT). Our results provide evidence that changes in
proportional R and CO estimates using ABP follow expected
pharmacological effects of these drugs (Fig. 7). We additionally
show every initiation of a drug for every experiment (Figs.
S10-S15) with corresponding analyses in the Supplementary
Information, Section D; these results hold, in general, across
experiments and drugs.

Figure 7B exhibits the vasoconstrictive effects (increased
R) of PE, an alpha-1 adrenergic agonist commonly used
to increase ABP during states of vasodilation. Figure 7C
shows the concomitant vasodilatory (decreased R) and positive
inotropic effects (increased CO) of DB, a beta-1 and beta-
2 adrenergic agonist commonly used to manage cardiogenic
shock. In this case, the vasodilatory effects of DB overpower
the vasoconstrictive effects of PE. Figure 7D showcases the
concomitant vasoconstrictive effects (increased R) of PE along
with the additional negative inotropic effects (decreased CO)
of ES, a beta-1 adrenergic antagonist. The combined veno-
arterial dilation effects of NI, a drug commonly used to treat
hypertension and decrease myocardial oxygen demand, are
shown in Figure 7E. Dilation of arteries decreases R and dilation
of veins decreases return of blood volume to the heart, thus
decreasing CO. Finally, the vasodilatory effects (decreased R)
of boluses of FT, a mu-selective opioid agonist, are shown in
Figure 7F.

III. DISCUSSION

Using the two-element Windkessel model, we have developed
an approach to estimate changes in vascular function (R) and and
cardiac function (CO) in real time. First, we developed a real-
time method to estimate proportional R (𝜏 = RC) from ABP.
Second, we developed a method to estimate proportional CO
(CO/C) from ABP and these proportional R estimates. Finally,
using additional AF measurements, we developed a method to
produce more-informed estimates of proportional R and CO. By
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Fig. 6. Experiment 1: Proportional CO (CO/C) Estimation Results. Accompanying each estimate using arterial blood pressure (ABP) is the calculated
95% credibility interval of CO/C at beat 𝒌. A. Comparison of the beat-by-beat estimate of CO/C using femoral ABP and 𝝉 estimates versus the beat-by-beat
estimate of CO/C using central ABP and aortic flow. B. Same as A. but using central ABP. C. Same as A. but using brachial ABP. D. Agreement of our Kalman
estimates using central, brachial or femoral ABP with corresponding central, brachial or femoral 𝝉 estimates.

applying these methods to a previously collected swine dataset,
we find that our proportional R and CO estimates from ABP
not only closely align with estimates derived using AF, but
also closely align when derived from various ABP recording
locations. Additionally, we find that infusions of common often
cardiovascular drugs affected these estimates predictably.

A. Interpretation of proportional R and CO

We have proposed states RC and CO/C for monitoring
the cardiovascular system to guide clinical interventions that
regulate ABP. To regulate ABP, a clinician must decide whether
to use clinical interventions that primarily alter R or CO. We
have found that common clinical drugs have distinct effects on
RC and CO/C. With an ability to modulate both RC and CO/C,
we have an ability to modulate the pressure waveform dynamics,
as described by the dynamic equation of the Windkessel model
(Eq. 1). With the simple assumption that pressure is equivalent
at the beginning an end of a pulse, we get that mean arterial
pressure (MAP) is RC · CO/C using the Windkessel model
(see Supplementary Information, Sec. E). With this relation, by
monitoring RC and CO/C and controlling each using common
clinical interventions, we have complete control over MAP.

Our states can be contrasted with the states R and CO, which
have immediate physiological relevance. Previous work has been
proposed to estimate these reliably from minimally invasive
ABP measurements. However, the Windkessel model informs
us that this cannot be possible without additional information,
like AF measurements (see Supplementary Information, Sec.
F). Specifically, different values of R and CO can give us the
same ABP pulse (Fig. S16). Alternatively, each ABP pulse can
give us a unique value of RC and CO/C. As no drugs are
clinically used to specifically alter C, it becomes uncertain how
useful it is to estimate C for ABP regulation. Therefore, from
a practical perspective, if we can only use minimally invasive
ABP measurements, we believe that RC and CO/C are the states
that should be estimated for reliable control of blood pressure
intervention.

If additional measurements are performed, then we can
certainly decompose RC and CO/C into R, C and CO. The
separate estimation of these three variables can then help
us address physiological questions, beyond intervention. For
example, knowledge of a patient’s compliance can indicate
peripheral vascular diseases such as atherosclerosis, aneurysms,
connective tissue diseases, synthetic vascular graft material
and effects of aging. We plan to focus on separate estimation
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Fig. 7. Effects of Common Cardiovascular Drugs on Femoral Mean Arterial Pressure (MAP) and Femoral ABP-derived Estimates of Proportional
R and CO. Here, 𝒌 indexes the beat, and 𝒌𝒊 indicates the initial beat of a segment. A. Direct (i.e., change in R or CO from change in drug concentrations)
and indirect (i.e., change in MAP as a result of change in R or CO) effects of cardiovascular drugs phenylephrine (PE), dobutamine (DB), esmolol (ES),
nitroglycerin (NI) and fentanyl (FT). Proportional R and CO estimates were normalized to the first estimate of the segment. B. Direct changes in estimates
of 𝝉 and estimates of CO/C causing indirect changes in MAP from a PE infusion. Segment from Experiment 1. C. Same as B. but from a DB infusion with
background PE. Segment from Experiment 3.D. Same as B. but from an ES infusion with background PE. Segment from Experiment 3. E. Same as B. but
from an NI infusion with background PE. Segment from Experiment 5. F. Same as B. but from FT boluses with background DB and PE. Vertical lines indicate
drug boluses. Segment from Experiment 6.

of R, C and CO in future work, comparing estimates with
and without dynamic independence assumptions (Eqs. 2, 3,
and 4) and exploring promising less invasive techniques for AF
measurement, such as echocardiography [23], [29].

B. Methodological Benefits and Limitations
Our methods for proportional R and CO estimation using ABP

yield beat-by-beat estimates with reduced noise and associated
credibility intervals. For these reasons, our estimates greatly
improve upon previous estimation methods using ABP and the
two-element Windkessel model which either produce beat-by-
beat estimates with significant noise [13] or estimates with
reduced noise at minute time resolutions [14]–[16]. In these
methods, we do not estimate C separately to provide direct
estimates of R and CO. However, we have argued that RC (i.e.,
the rate of decay of pressure through the microcirculation) and

CO/C (i.e., the rate of pressure increase from compliant arteries
filling) are themselves useful and interpretable quantities.

Our method for proportional R and CO estimation using
additional AF measurements relaxes a common and incorrect
clinical assumption: that the R and C branches of the two-
element Windkessel model both receive the full volume of aortic
flow at each pulse [30]. For example, this assumption is explicitly
used in Mukkamala et al. to derive proportional estimates of CO
from 𝜏 [14]. Through relaxation of this assumption, our method
extracts improved state estimates derived from ABP and AF. The
resultant estimates do lack smoothness most likely because of
varied alignment of AF and ABP pulses and because we did not
implement a Kalman filter in this method. Given the reliability
and clinical relevance of our estimates using ABP, improving
this is not necessary.

This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBME.2024.3408808

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



10 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. XX, NO. XX, XXXX 2017

C. Clinical Implications
The results from use of our approach have significant clinical

implications. First, we have shown that we can estimate propor-
tional R and CO with high accuracy from a single peripheral
artery catheter. As such, clinical use of our approach may
significantly decrease the need for use of high-risk interventions
like pulmonary artery catheters. Peripheral artery catheters
are already very commonly used in the OR and ICU settings
and carry a very low complication rate in both adult [31]
and pediatric [32] populations. Second, the consistency of our
proportional R and CO estimates across the arterial tree – as
supported by our extension of the two-element Windkessel
model – show that these states are conserved throughout
the arterial system. As such, clinicians could implement this
approach using radial or femoral peripheral artery catheters.
Third, the predictable responses of these states to standard
cardiovascular drugs emphasize the actionable information
about changing vascular and cardiac function contained in
our estimates. In general, our approach enables clinicians to
accurately track these vital hemodynamic states throughout the
perioperative period and during critical illness with peripheral
artery catheters. In severe patient cases, our estimates can
provide guidance to clinicians during the transition to techniques
using highly invasive measurements when necessary. In addition
to their immediate clinical relevance, our proportional R and CO
estimates can inform pharmacodynamic studies or function as
controllable signals for a closed-loop system for cardiovascular
control [33], [34]. We emphasize that prior to integration in
clinical care, extensive analyses of this technique using larger
datasets from both swine and human subjects is necessary; we
will pursue this in future work.

IV. CONCLUSION

We developed a novel state-space approach for real-time
proportional estimation of systemic vascular resistance and
cardiac output. We then validated this approach with a pre-
viously collected swine cardiovascular dataset. Specifically, we
showed that reliable estimates of a dynamic time constant of the
two-element Windkessel model enabled reliable estimation of
proportional systemic vascular resistance and cardiac output. We
developed methods which estimate proportional resistance and
cardiac output from arterial blood pressure measurements and
estimate resistance and cardiac output directly with both arterial
blood pressure and aortic flow measurements. Through use of
a Kalman filter, our arterial blood pressure-derived estimates
are beat-by-beat with reduced noise. Regardless of the arterial
catheter location, we found that our arterial blood pressure-
derived estimates closely align with those from both arterial
blood pressure and aortic flow and with each other. Even further,
our proportional resistance and cardiac output estimates often
change predictably in response to common cardiovascular drugs.

This work addresses a difficult decision clinicians face daily
when managing blood pressure: is this patient hypotensive
or hypertensive because of changes in vascular tone (i.e.,
systemic vascular resistance) or blood flow out of the heart
(i.e., cardiac output)? Clinicians must differentiate these causes
of arterial blood pressure changes to ensure that treatment

appropriately restores end-organ perfusion and does not cause
inadvertent complications. Estimates of resistance and cardiac
output from our approach provide information that can readily
be used to guide hemodynamic management decisions in real
time. Even further, estimates from our approach can also be
used in pharmacodynamic studies to delineate effects of a
drug on different components of the cardiovascular system or
can serve as a control signal for use in closed-loop systems
for cardiovascular control (e.g., closed-loop control of blood
pressure).

APPENDIX: MATERIALS AND METHODS

A. Experimental data
We used a previously collected swine dataset [14] with

which we applied our estimation approach. In this dataset, the
cardiovascular systems of six young Yorkshire swine (30–34
[kg]) were monitored while under isoflurane anesthesia. In each
experiment, recordings were made of peripheral ABP (femoral
and brachial), central ABP and AF. An external pressure
transducer (TSD104A, Biopac Systems, Santa Barbara, CA)
was used for femoral ABP, a 23- or 25-gauge angiocatheter was
placed as distal as possible to the brachial artery for brachial
ABP and a micro-manometer-tipped catheter (SPC 350, Millar
Instruments, Houston, TX) was fed retrograde to the thoracic
aorta for central ABP. The central catheter was placed such
that ABP pulse decays resembled an exponential decay. AF was
recorded from an ultrasonic flow probe (T206 with A-series
probes, Transonic Systems, Ithaca, NY) placed around the aortic
root [14]. This protocol yielded ABP and AF both sampled at
250 [Hz].

A wide array of drugs were used to manipulate the cardio-
vascular system including the following: phenylephrine (PE),
dobutamine (DB), esmolol (ES), nitroglycerin (NI) and fentanyl
(FT). These drugs each have varied mechanisms of action. PE
increases R as an alpha-1 adrenergic agonist [35] and has been
shown to have varied indirect effects on CO [36]–[38]. DB
increases cardiac output as a beta-1 adrenergic agonist and
decreases R as a beta-2 adrenergic agonist [39]. ES decreases
CO as a beta-1 adrenergic antagonist [40] and can sometimes
increase R through beta-2 antagonism at high doses [41].
NI generates nitric oxide which relaxes smooth muscles. Its
effect is most prominent in the veins, which decreases cardiac
preload and CO as a result. It minimally decreases R, which
represents resistance in the arteries [42]. FT decreases R as
a mu-selective opioid agonist [43], [44]. Additional drugs
used in these experiments (acetylcholine and isoprotenerol) are
presented in the Supplementary Information.

B. Arterial blood pressure and aortic flow signal processing
We describe the ABP and AF signal processing necessary to

implement our estimation methods. This required identification
of the onset, systolic peak and end of systole (beginning of
diastole) for each ABP pulse. For central ABP, we also identified
prevalent dicrotic notches, as described in the Supplementary
Information. Finally, for our methods using highly invasive
measurements, we corrected alignment of each AF and ABP
pulse.
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We first filtered each ABP waveform, 𝑝 [𝑛], using a Kaiser
window low pass filter with a pass band at 10 [Hz] and a
stop band at 12 [Hz]. We then defined a first-order backwards
difference approximation, 𝑝𝑑 [𝑛], to the first derivative of
pressure, ¤𝑝(𝑡):

𝑝𝑑 [𝑛] B
𝑝(𝑛𝑇𝑠) − 𝑝(𝑛𝑇𝑠 − 𝑇𝑠)

𝑇𝑠
(7)

where 𝑇𝑠 = 60 𝑓 −1
𝑠 is the sampling period of 𝑝 [𝑛].

Next, we did initial detection of the ABP pulse onsets
using the slope sum technique [45], with experiment-specific
thresholds. Using insight from the two-element Windkessel
model, we identified the onset of an ABP pulse to be when the
derivative of 𝑝 begins to increase after the diastolic decay. As
such, we corrected our onsets to be the first minimum of 𝑝𝑑 [𝑛]
looking backwards from the detected onset from the slope sum
technique.

Following our onset detection, we found the systolic peak
with a simple maximum of 𝑝 [𝑛] between the onset of beat 𝑘
and 𝑘 + 1. We then identified the approximate end of systole,
the point when the aortic valve closes, as the first minimum
of 𝑝𝑑 [𝑛] following the systolic peak. This point was chosen
because, following an aortic flow pulse, there is a period of
backflow as the aortic valve closes. This is visible at 𝑡 ≈ .22
[sec] in Fig. 2B. When simulating the two-element Windkessel
model with a swine AF pulse, this backflow leads to a maximum
rate of decay in the simulated pressure, hence the selection of a
local minimum of 𝑝𝑑 [𝑛].

Finally, for the methods using AF, we implemented a
procedure to align AF pulses with ABP pulses. We defined
correct pulse alignment as when, for pulse 𝑘 , the point of
greatest backflow of 𝑓 [𝑛] (the minimum of 𝑓 [𝑛]) aligns with the
minimum in 𝑝𝑑 [𝑛] following the systolic peak. This approach
uses similar logic to our approach for identification of the end
of diastole of an ABP pulse. If the calculated shift suggested to
shift the AF pulse backwards in time, we then corrected the AF
shift to the previous beat’s shift. We implemented this correction
because central, femoral or brachial ABP pulses must be delayed
in time compared to the AF pulse (a blood flow pulse out of the
heart passes through the aorta before reaching either location of
catheterization).

These detected ABP and AF features are all necessary to
run our estimation methods using ABP yielding estimates of
proportional R and CO and our estimation method using ABP
and AF yielding direct estimates of R, C and CO.

C. Physiological model
We used the two-element Windkessel model [19] as the

underpinning of our estimation methods using ABP or ABP and
AF with additional assumptions that the model parameters, R,
C and CO, are time-varying and that there is a single parameter
value at every beat, 𝑘 . The model is explored in more detail in
the Section II-A.

D. Estimation of proportional R (𝜏) from aortic flow and
arterial blood pressure

Using ABP and AF, we developed a method to estimate 𝜏

by separately estimating R and C to get 𝜏 = 𝑅𝐶. Substituting

Equation 7 into Equation 1, with our assumption that R and C
vary between beats led to:

𝑓 [𝑛] = 1
𝑅𝑘

𝑝 [𝑛] + 𝐶𝑘 𝑝𝑑 [𝑛] for 𝑡 within beat 𝑘 (8)

We then did a simple numerical integration using the rectangular
rule to both sides over integration period 𝑛0 to 𝑛1:

𝑛1∑︁
𝑛0

𝑓 [𝑛]𝑇𝑠 =
1
𝑅𝑘

𝑛1∑︁
𝑛0

𝑝 [𝑛]𝑇𝑠 + 𝐶𝑘

𝑛1∑︁
𝑛0

𝑝𝑑 [𝑛]𝑇𝑠 (9)

We selected two unique integration periods: the systolic period
and the full beat. We skipped pulses where the ABP-AF
alignment procedure failed (i.e., pulse segments were empty
vectors). By choosing two unique integration periods, we then
had two equations with two unknowns and could solve for an
estimate of 𝑅𝑘 and 𝐶𝑘 separately. We first solved for 𝐶𝑘 using
the systolic segment and then 𝑅𝑘 using 𝐶𝑘 and the full beat.
These 𝑅𝑘 and 𝐶𝑘 estimates then yielded an estimate of 𝜏𝑘 .

E. Estimation of proportional R (𝜏) from arterial blood
pressure

We developed a state-space model of 𝜏𝑘 , the time constant
parameter in the two-element Windkessel model at beat 𝑘 , where
the state equation is a Gaussian random walk and the observation
equation relates samples of the diastolic portion of an ABP
pulse to the slowly varying 𝜏𝑘 . With this state-space model, we
estimated 𝜏𝑘 using a Kalman Filter.

We began with the observation equation. From the two-
element Windkessel model, we can describe the diastolic decay
of an ABP pulse in terms of 𝜏𝑘 . The ABP waveform follows an
exponential decay beginning at the end of the systolic period,
following the inflow ofΔ𝑉𝑘 [L] of blood volume into the system.
So, for a particular beat, we specified the following relationship
between 𝜏𝑘 and a single sample of the diastolic portion of the
blood pressure waveform, 𝑣𝑘,𝑖:

𝑣𝑘,𝑖 = 𝑎𝑘 exp
(
−
𝑡𝑘,𝑖

𝜏𝑘

)
(10)

where 𝑘 indexes the heart beats and 𝑖 indexes the 𝐼𝑘 observations
per beat taken at a sampling rate 𝑓𝑠 in [Hz]. The number of
observations per time point vary for each beat: hence, 𝐼 is also
indexed by 𝑘 . Additionally, 𝑡𝑘,𝑖 corresponds to the time value
in [sec] elapsed from the first blood pressure observation, 𝑦𝑘,0,
and 𝑎𝑘 is the y-intercept of the exponential function at 𝑡𝑘,0.
We assumed 𝑎𝑘 to be the initial observation of the diastolic
period, 𝑣𝑘,𝑖 . Full observation vectors at pulse 𝑘 were removed
if expected to be faulty (e.g., if 𝐼𝑘 > 1.5𝐼𝑘−1, 𝐼𝑘 < .5𝐼𝑘−1 or if
the first sample was less than the final sample). For simplicity,
we then log-transformed equation (10):

log(𝑣𝑘,𝑖) = log(𝑎𝑘𝑒−
𝑡𝑘,𝑖
𝜏𝑘 ) (11)

= log(𝑎𝑘) −
1
𝜏𝑘

𝑡𝑘,𝑖 (12)

Next we defined:

𝑤𝑘,𝑖 B −(log(𝑣𝑘,𝑖) − log(𝑎𝑘)) (13)
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where any 𝑤𝑘,𝑖 = 0 was removed. Then, we solved for an
equation relating the underlying 𝜏𝑘 to our observations (ratio
of amount of time passed from the initial observation, 𝑡𝑘,𝑖 ,
to the pressure drop, 𝑤𝑘) and made the assumption that our
observations were noisy:

𝑡𝑘,𝑖

𝑤𝑘,𝑖

= 𝜏𝑘 + 𝜖𝑘,𝑖 (14)

where each 𝜖𝑘,𝑖 ∼ 𝑁 (0, 𝜎2
𝜖 ,𝑘,𝑖

). We assumed increasing con-
fidence in observations later in the beat (i.e., 𝜎2

𝜖 ,𝑘,𝑖
decreases

with increasing 𝑖).
We now define 𝑦𝑘,𝑖 B 𝑡𝑘,𝑖 · 𝑤−1

𝑘,𝑖
. We removed any 𝑦𝑘,𝑖 that

was not in a physiological range for 𝜏𝑘 (e.g., 8 > 𝑦𝑘 > .2). With
these definitions, we have our full observation equation. Our
observation equation can be written in a more compact notation
by expanding over the 𝑖 index. We do not include 𝑖 = 0, because
this observation gives us no additional information. This is our
final observation equation:

𝑦𝑘,1
𝑦𝑘,2
...

𝑦𝑘,𝐼𝑘−1


=


1
1
...

1


𝜏𝑘 +


𝜖𝑘,1
𝜖𝑘,2
...

𝜖𝑘,𝐼𝑘−1


(15)

Equation 15 can be represented in the following way:

y𝑘 = 1𝑘𝜏𝑘 + 𝝐 𝑘 (16)

where we have column vectors y𝑘 ∈ R𝐼𝑘−1, 𝜏𝑘 ∈ R, 𝝐 𝑘 ∈ R𝐼𝑘−1

and 1𝑘 is a vector of ones with length 𝐼𝑘 − 1. The covariance
matrix of the defined noise vector at beat 𝑘 is𝚺𝝐 ,𝑘 = diag(𝜎2

𝜖 ,𝑘,𝑖
)

of dimension 𝐼𝑘 − 1 × 𝐼𝑘 − 1.
We then specified a state-space equation which simply

constrains the state values to vary smoothly over time, as we
don’t expect the cardiovascular state, 𝜏𝑘 , to change rapidly. As
such, we assumed 𝜏𝑘 follows a Gaussian random walk:

𝜏𝑘+1 = 𝜏𝑘 + 𝜂𝑘 (17)

where 𝜂𝑘 ∼ 𝑁

(
0, 𝜎2

𝜂

)
and each 𝜂𝑘 is independent.

We then used a Kalman Filter to estimate 𝜏𝑘 given our
above state-space model. Given a maximum a posteriori (MAP)
estimate, 𝜏[𝑘−1 |𝑘−1] , of 𝜏𝑘−1 at beat 𝑘 − 1 and our defined
observation and state equations with Gaussian additive noise,
we could fully specify our state estimation method using the
traditional Kalman filter equations.

First, we defined our one-step prediction density. We specified
this Gaussian distribution with the one-step state prediction of
𝜏𝑘 for beat 𝑘 given observations up to beat 𝑘 − 1:

𝜏[𝑘 |𝑘−1] = 𝜏[𝑘−1 |𝑘−1] (18)

and the following one-step prediction variance as:

𝜎2
[𝑘 |𝑘−1] = 𝜎2

[𝑘−1 |𝑘−1] + 𝜎2
𝜂 (19)

Next, we defined our Kalman gain term:

K𝑘 = 𝜎2
[𝑘 |𝑘−1]1

𝑇
𝑘 (1𝑘𝜎

2
[𝑘 |𝑘−1]1

𝑇
𝑘 + 𝚺𝝐 ,𝑘)−1 (20)

We specified our posterior density, additionally a Gaussian
distribution, with the MAP estimate at beat 𝑘 given observations
including beat 𝑘 as:

𝜏[𝑘 |𝑘 ] = 𝜏[𝑘 |𝑘−1] + K𝑘 (𝒚𝑘 − 1𝑘𝜏[𝑘 |𝑘−1]) (21)

and our posterior density variance as:

𝜎2
[𝑘 |𝑘 ] =(1 − K𝑘1𝑘)𝜎2

𝑘 |𝑘−1 (1 − K𝑘1𝑘)𝑇 + K𝑘𝚺𝝐 ,𝑘K𝑇
𝑘 (22)

In order to run this Kalman filter, we made an assumption of
the distribution of the initial state, 𝜏0. The following observation
equation corresponds to this beat:

𝒚0 = 10𝜏0 + 𝝐0 (23)

We defined the MAP estimate, 𝜏[0 |0] , with a standard linear
regression which defines the MAP estimate as:

𝜏[0 |0] =
(
1𝑇0 10

)−1
1𝑇0 𝒚0 (24)

with variance:
𝜎2
[0 |0] =

(
1𝑇0 10

)−1
𝜎̂2
𝜖 (25)

and a further specified:

𝜎̂2
𝜖 =

(𝒚0 − 10𝜏[0 |0])𝑇 (𝒚0 − 10𝜏[0 |0])
𝐼0

(26)

where, recall that 𝐼0 is the number of observations from the initial
beat. With this specified Kalman filter, a MAP estimate, 𝜏[𝑘 |𝑘 ] ,
can be obtained for every beat. Additionally, a 95% credibility
interval, the analog to a confidence interval in Bayesian statistics,
can be calculated for each 𝜏𝑘 ∼ 𝑁 (𝜏[𝑘 |𝑘 ] , 𝜎2

[𝑘 |𝑘 ]) by generating
the cumulative distribution function of 𝜏𝑘 and finding the 2.5th
and 97.5th percentiles.

F. Estimation of proportional CO using proportional R
estimates

With AF and ABP, we estimated CO/C. We did this by
averaging 𝑓 [𝑛] over each pulse and dividing that by estimates
of 𝐶𝑘 calculated using AF and ABP.

With ABP, we additionally estimated CO/C using Equation 8
and 𝜏 estimates. To do this, we averaged over the full beat from
the onset of pulse 𝑘 (at sample 𝑜𝑘) to the following onset (at
sample 𝑜𝑘+1):

1
𝑁𝑘

𝑜𝑘+1∑︁
𝑜𝑘

1
𝜏[𝑘 |𝑘 ]

𝑝 [𝑛]𝑇𝑠 + 𝑝𝑑 [𝑛]𝑇𝑠 =
1

C𝑘𝑁𝑘

𝑜𝑘+1∑︁
𝑜𝑘

𝑓 [𝑛]𝑇𝑠 (27)

where 𝑁𝑘 is the number of samples for the full pulse, 𝑘 , and CO
is average flow per pulse. We additional made the assumption
that following the detected systolic end of 𝑝 [𝑛], flow was zero.
This provided a single observation of CO/C for every beat. We
then implemented a Gaussian Kalman Filter using this single
observation per beat to produce smooth estimates of (CO/C)𝑘 .

G. Summary statistics of estimation performance
We selected the following summary statistics to further

analyze the performance of our estimation frameworks: the
Pearson product-moment correlation coefficient, average abso-
lute percent error, and root mean square error normalized by a
mean of the data. Details of our explicit formulations are in the
Supplementary Information, Section G.
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