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Abstract

Many early warning algorithms are downstream of clinical evaluation and diagnostic testing,

which means that they may not be useful when clinicians fail to suspect illness and fail to

order appropriate tests. Depending on how such algorithms handle missing data, they could

even indicate “low risk” simply because the testing data were never ordered. We considered

predictive methodologies to identify sepsis at triage, before diagnostic tests are ordered, in

a busy Emergency Department (ED). One algorithm used “bland clinical data” (data avail-

able at triage for nearly every patient). The second algorithm added three yes/no questions

to be answered after the triage interview. Retrospectively, we studied adult patients from a

single ED between 2014–16, separated into training (70%) and testing (30%) cohorts, and a

final validation cohort of patients from four EDs between 2016–2018. Sepsis was defined

per the Rhee criteria. Investigational predictors were demographics and triage vital signs

(downloaded from the hospital EMR); past medical history; and the auxiliary queries

(answered by chart reviewers who were blinded to all data except the triage note and initial

HPI). We developed L2-regularized logistic regression models using a greedy forward fea-

ture selection. There were 1164, 499, and 784 patients in the training, testing, and validation

cohorts, respectively. The bland clinical data model yielded ROC AUC’s 0.78 (0.76–0.81)

and 0.77 (0.73–0.81), for training and testing, respectively, and ranged from 0.74–0.79 in

four hospital validation. The second model which included auxiliary queries yielded 0.84

(0.82–0.87) and 0.83 (0.79–0.86), and ranged from 0.78–0.83 in four hospital validation.

The first algorithm did not require clinician input but yielded middling performance. The sec-

ond showed a trend towards superior performance, though required additional user effort.

These methods are alternatives to predictive algorithms downstream of clinical evaluation

and diagnostic testing. For hospital early warning algorithms, consideration should be given

to bias and usability of various methods.
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Author summary

Predictive algorithms for hospitals often rely on the results of diagnostic tests as predictors

for whether patients have serious and unexpected conditions. Strong predictive perfor-

mance of such algorithms might be misleading for the following reason: doctors may not

order the appropriate diagnostic tests unless they already have some level of concern

about the patient, so the data will be available if doctors are already suspecting the correct

diagnosis but not available in cases when doctors overlook the correct diagnosis. In this

manuscript, we consider early sepsis identification and explore two alternative strategies

for avoiding any reliance on diagnostic testing: the use of “bland” data that should be

available on every single patient, and the use of a few objective “yes/no” questions that

might be answered on patients with abnormal vital signs, to provide additional informa-

tion for the predictive algorithms.

Introduction

Substantial efforts have focused on machine learning (ML) algorithms for automated identifi-

cation of illness, [1] although adoption has generally been slower than hoped [2,3]. Sepsis

detection is an exemplary topic because early identification could enable earlier treatment and

better outcomes [4].

Numerous reports described promising sepsis detection algorithms, [5] although prospec-

tive performance has repeatedly fallen short [6,7]. Further editorializing about one such report

[7], the senior author provided non-peer reviewed commentary that the sepsis detection algo-

rithm had used antibiotic orders as a key predictive input, allowing for strong retrospective

performance but inferior prospective performance due to incorporation bias [8]. Incorpo-

ration bias occurs when the investigational predictors are also determinative factors in defin-

ing the outcome [9]. Population drift is a second factor that has been cited to explain reduced

prospective performance [10].

A third potential factor has not received as much attention: diagnostic suspicion bias. In

general, predictive algorithms for hospitalized patients categorize the results of diagnostic test-

ing. Yet certain diagnostic tests may not be performed until after clinicians already have evalu-

ated a patient, developed diagnostic suspicion, and ordered appropriate tests [11]. In multiple

reports, the availability of such diagnostic tests has been associated with illness–independent of

the actual diagnostic results–because clinicians perform testing precisely because they are con-

cerned about a patient. The frequency of vital-sign checks, [12] the frequency of blood tests,

[13] and the sending of bloodwork in the middle of the night have all been correlated with ill-

ness [14]. Conversely, clinicians may not perform timely testing without a priori diagnostic

concern, and it is in this situation when decision support from a predictive model could be

most useful.

This poses a major challenge for early warning algorithms that rely on diagnostic testing

data. Depending on how an algorithm handles missing data, an algorithm could indicate that

the patient is low risk simply whenever there are no diagnostic data to suggest otherwise. The cli-

nician might then observe the algorithm’s erroneous “low-risk” prediction, take false reassur-

ance, and so further delay appropriate testing. In other words, an awareness deadlock between

clinician and computer could arise: a feedback loop reinforcing the other’s failure to suspect

the correct diagnosis. In this scenario, the early warning algorithm would in fact be worse than

nothing, because it would actively reinforce a clinician’s error in diagnostic judgement. The

risks of an awareness deadlock may be widespread, considering that a review article of 107
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predictive algorithms found that none of them had accounted for so-called “informative obser-

vations” (i.e., when the presence or absence of a diagnostic observation was not random) [1].

Our goal was to explore a predictive algorithm for sepsis identification for an overcrowded

Emergency Department (ED), where there could be long waits for many patients before any

evaluation or testing. In this scenario, the ideal sepsis prediction algorithm would not be

downstream of diagnostic testing; instead, the ideal algorithm would provide early identifica-

tion of patients who should receive the early evaluation and/or treatment without waiting for

diagnostic testing to be completed. Prior reports have found that septic patients often present

to EDs with vague symptoms and without obvious vital-sign abnormality, and that these were

the patients most at risk of antibiotic treatment delay [15,16].

In reviewing the published literature, we did not find broadly accepted best practices to

minimize diagnostic suspicion bias for early warning algorithms. Our team decided to explore

two strategies. The first was to rely only on “bland clinical data” which were data elements that

should be available on nearly every patient at triage, regardless of clinicians’ suspicions of ill-

ness. The second strategy involved “auxiliary queries” in which clinicians would be prompted

to answer brief, objective questions that augmented bland hospital data. Neither strategy

required diagnostic testing results. In this report, we explore these strategies by developing

exemplary algorithms, and we discuss their operational implications.

Results

Patient population

From Interval-1, we analyzed 1,663 patients in total, 1,164 (70%) of which constituted the

training set while 499 (30%) were reserved as a hold-out test set. From Interval-2, we studied

an additional 784 patients (sixteen patients excluded for missing basic vital signs, i.e., tempera-

ture or RR). The subject characteristics for subjects from the primary hospital Massachusetts

General Hospital (MGH) are provided in Table 1 and Table 2, broken down by Interval and by

non-sepsis versus sepsis cases. Subject characteristics for subjects from the other hospitals are

available in S1 File. Median Cohen’s kappa for various parameters determined by chart review

was 0.76 (interquartile range 0.68 to 0.85).

Model composition

After parameter selection, the Bland Model consisted of nine physiologic and demographic

variables (Triage oxygen saturation [SpO2]; high temperature; low temperature; SBP; Glasgow

Coma Scale score; shock index; respiratory rate; gender; age).

After parameter selection, the Essential Model included the same parameters as in the

Bland model (except it no longer included low temperature); and the Essential Model also

included the responses to each of the three auxiliary queries, and a single true-false indicator

of whether the patient had at least one major comorbidity.

After parameter selection, the Full Model consisted of 24 variables: age; ten different past

medical history conditions; five symptoms; six vital signs; and two elements from the history

of present illness.

Additional details and descriptions about these investigational parameters are available in

S1 File. Additional technical details about the model are also available in the first author’s doc-

toral thesis [17].

Model performances

ROC AUCs are provided in Table 3. The following observations are offered:
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1. The ROC AUC for qSOFA trended below all investigational models. This was apparent for

every cohort and sub-cohort. In some cases, the 95% confidence interval (CI) of the qSOFA

was below the 95% CI of the investigational models;

2. The ROC AUCs for the Bland Model generally trended lower than the Essential Model and

the Full Model;

3. Despite fewer input parameters, the Essential Model yielded similar ROC AUCs to the Full

Model;

4. Overall, for each model, ROC AUCs were similar through all cohorts and sub-cohorts. In

other words, within each individual column of Table 3, ROC AUCs were generally

consistent.

Additional details about model performance are available in S1 File and in the first author’s

doctoral thesis [17].

Diagnostic test characteristics for the Essential Model are provided in Table 4, exploring

diagnostic test performance at one lower threshold (i.e., higher sensitivity) and one higher

Table 1. Patient characteristics. Values are presented as median (interquartile range) or proportion of cohort.

Training Cohort Testing Cohort MGH Validation Cohort

Non-sepsis Cases

(N = 590)

Sepsis Cases

(N = 574)

Non-sepsis Cases

(N = 245)

Sepsis Cases

(N = 254)

Non-sepsis Cases

(N = 131)

Sepsis Cases

(N = 66)

Demographics

Age, years 58 (39, 71) 67 (55, 77) 59 (39, 71) 64 (53, 76) 60 (46, 74) 67 (59, 77)

Male, % 49 60 47 56 51 56

Race

American Indian or Alaska

Native, %

<1 0 0 0 <1 0

Asian, % 4 5 4 3 3 6

Black or African American, % 8 5 5 6 8 6

Middle Eastern or Northern

African, %

<1 2 0 0 0 0

Native Hawaiian or Pacific

Islander, %

0 0 <1 0 0 2

Other, % 8 6 10 5 5 8

White or Caucasian, % 74 78 76 83 77 78

Unavailable, % 4 4 3 2 4 0

Ethnicity

Hispanic, % 5 4 4 2 8 10

Non-Hispanic, % 87 88 92 96 88 84

Unavailable, % 9 8 3 2 4 6

Past medical history

Coronary artery disease, % 16 24 18 21 21 41

Congestive heart failure, % 16 21 16 21 21 17

Chronic kidney disease, % 11 24 15 26 21 24

Chronic obstructive pulmonary

disease, %

12 18 15 16 13 30

Cerebrovascular accident, % 7 11 9 8 9 24

Liver disease, % 4 9 6 9 6 5

MGH, Massachusetts General Hospital.

https://doi.org/10.1371/journal.pdig.0000365.t001
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threshold (i.e., higher specificity). The lower threshold was intended to offer sepsis screening,

i.e., sensitivity > 80%. The higher threshold was intended to indicate patients who were likely

(>50% PPV) to have sepsis. The findings shown in Table 4 suggest that the Essential Model

may be more useful for sepsis screening at triage instead of classifying which patients actually

do have sepsis. Specifically, test characteristics using the threshold� 0.2 were encouraging for

a screening test, whereas there were worse test characteristics, including weak F1 scores, when

classifying patients using the high-specificity threshold� 0.6.

Audit for biases related to social determinants of health

In multivariable analysis of the relationship between the Essential Model output and sepsis,

race/ethnicity and gender were non-significant predictors, i.e., p> 0.05, indicating that there

Table 2. Characteristics of Emergency Department presentation and outcomes. Values are presented as median (interquartile range) or proportion of cohort.

Training Cohort Testing Cohort MGH Validation Cohort

Non-sepsis Cases

(N = 590)

Sepsis Cases

(N = 574)

Non-sepsis Cases

(N = 245)

Sepsis Cases

(N = 254)

Non-sepsis Cases

(N = 131)

Sepsis Cases

(N = 66)

Vital signs

Triage SBP, mmHg 117 (103, 137) 111 (92, 133) 116 (100, 136) 112 (89, 138) 127 (108, 151) 118 (99, 133)

Proportion of patients w/ ED SBP

<90 mmHg, %

28 75 30 69 29 59

Median time to hypotension from

triage, min

N/A 55 (0, 212) N/A 41 (0, 185) N/A 93 (16, 301)

Triage Heart rate, bpm 92 (75, 111) 107 (89, 121) 87 (75, 105) 110 (90, 124) 92 (77, 105) 99 (84, 112)

Triage Glasgow Coma Scale score 15 (15, 15) 15 (13, 15) 15 (14, 15) 15 (14, 15) 15 (15, 15) 15 (15, 15)

Triage respiratory rate, min-1 18 (18, 20) 20 (18, 22) 18 (18, 20) 20 (18, 24) 20 (18, 20) 20 (18, 22)

Triage SpO2, % 98 (96, 99) 96 (94, 98) 98 (95, 100) 96 (93, 98) 97 (95, 99) 97 (94, 98)

Triage temperature,˚F 97.7 (97.0, 98.4) 98.0 (97.1, 99.5) 97.6 (97.0, 98.3) 98.0 (97.0, 99.4) 97.5 (96.9, 98.4) 98.0 (97.3, 98.9)

ED diagnostics

First serum lactate, mmol/L 1.8 (1.2, 4.3) 3.4 (2.1, 5.4) 2.0 (1.2, 4.6) 4.0 (2.4, 5.3) 1.5 (1.1, 2.5) 2.8 (1.6, 4.3)

No Lactate, % 51 1 50 2 44 2

Sent < 1 hour, % 30 71 31 67 5 39

Sent 1 to 3 hours, % 13 20 13 21 36 44

Sent� 3 hours, % 6 8 7 11 15 15

White blood cell count, 1000/μL 9.5 (6.9, 13.3) 13.8 (7.6, 19.3) 9.1 (6.6, 13.7) 13.3 (7.4, 18.6) 9.4 (7.7, 12.6) 13.7 (8.2, 18.9)

No WBC, % 11 <1 12 <1 10 0

Sent < 1 hour, % 49 78 51 72 37 44

Sent 1 to 3 hours, % 30 19 27 20 40 42

Sent� 3 hours, % 10 2 9 7 13 14

Outcome

Infection source, %

Pulmonary N/A 24 N/A 27 N/A 30

Urinary 20 16 26

Intraabdominal 19 24 24

Skin / soft tissue 5 8 9

Other 6 5 0

Unknown 23 19 6

Hospital mortality, % 11 25 11 24 2 23

MGH, Massachusetts General Hospital.

https://doi.org/10.1371/journal.pdig.0000365.t002
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was no statistically significant global bias towards positive predictions nor negative predictions

by the Essential Model as a function of race/ethnicity nor gender. Examining the Essential

Model’s prediction accuracy at both the high-sensitivity and high-specificity cut-offs, there

was no increased prediction error associated with non-white/Hispanic nor non-male patients.

Additional details of this audit for bias are provided in S1 File.

Discussion

Diagnostic suspicion bias is a theoretical risk of early-warning machine learning algorithms

that analyze in-hospital clinical data. Depending on how they handle missing data, such

Table 3. Area under the receiver operating characteristic curve (ROC AUC) for identification of sepsis upon ED triage by four investigational prediction models.

Cohort qSOFA Model Bland Model Essential Model Full Model

Training set (MGH) 0.66 (0.63, 0.69) 0.78 (0.76, 0.81) 0.84 (0.82, 0.87) 0.86 (0.84, 0.88)

Training set random sub-cohort 0.61 (0.52, 0.70) 0.76 (0.68, 0.84) 0.81 (0.74, 0.87) 0.80 (0.73, 0.86)

Hold-out test set 0.63 (0.59, 0.68) 0.77 (0.73, 0.81) 0.83 (0.79, 0.86) 0.82 (0.78, 0.86)

Hold-out test set random sub-cohort 0.60 (0.48, 0.73) 0.73 (0.61, 0.85) 0.80 (0.68, 0.92) 0.80 (0.71, 0.90)

Validation cohorts

MGH 0.58 (0.50, 0.66) 0.74 (0.68, 0.81) 0.79 (0.73, 0.85)

MGH random sub-cohort 0.75 (0.59, 0.90) 0.91 (0.84, 0.99) 0.81 (0.68, 0.94)

BWH 0.65 (0.58, 0.73) 0.79 (0.73, 0.85) 0.83 (0.77, 0.88)

BWH random sub-cohort 0.55 (0.32, 0.78) 0.94 (0.88, 1.0) 0.92 (0.85, 0.99)

NWH 0.64 (0.56, 0.73) 0.74 (0.67, 0.81) 0.78 (0.72, 0.85)

NWH random sub-cohort 0.28 (0, 0.86) 0.68 (0.22, 1.0) 0.84 (0.55, 1.0)

NSMC 0.59 (0.50, 0.68) 0.77 (0.70, 0.84) 0.80 (0.74, 0.87)

NSMC random sub-cohort 0.79 (0.54, 1.0) 0.96 (0.9, 1.0) 0.96 (0.89, 1.0)

Results in parentheses are the 95% confidence intervals for the ROC AUCs. qSOFA has been recommended by the Surviving Sepsis Campaign for early recognition of

sepsis. The Bland Model only used data typically available on all patients at triage, i.e., age and vital signs. The Essential Model consisted of the same parameters as in the

Bland Model, in addition to the responses to each of the three auxiliary queries, and a single true-false indicator of whether the patient had at least one major

comorbidity. The Full Model was developed from all data elements available at triage, including granular coding of the patient’s past medical history and of the patient’s

reported symptoms. BWH, Brigham and Women’s Hospital; MGH, Massachusetts General Hospital; NSMC, North Shore Medical Center; NWH, Newton Wellesley

Hospital.

https://doi.org/10.1371/journal.pdig.0000365.t003

Table 4. Diagnostic test characteristics for the Essential Model using triage vital signs.

Model threshold Hospital Sensitivity Specificity PPV NPV Accuracy F1

� 0.2 MGH 80% 61% 51% 86% 68% 62%

BWH 91% 66% 62% 92% 76% 74%

NWH 75% 68% 48% 87% 70% 58%

NSMC 69% 72% 45% 88% 71% 54%

Average 79% 67% 52% 88% 71% 62%
� 0.6 MGH 36% 90% 65% 74% 72% 47%

BWH 49% 84% 64% 73% 70% 55%

NWH 25% 87% 44% 75% 70% 32%

NSMC 31% 90% 50% 80% 75% 38%

Average 35% 88% 56% 76% 72% 43%

BWH, Brigham and Women’s Hospital; ED, emergency department; HR, heart rate; ICU, intensive care unit; MGH, Massachusetts General Hospital; NSMC, North

Shore Medical Center; NWH, Newton Wellesley Hospital. PPV, positive predictive value; NPV, negative predictive value.

https://doi.org/10.1371/journal.pdig.0000365.t004
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algorithms could predict “low risk” simply when there were insufficient diagnostic tests. Then,

the clinician might delay testing because of false reassurance from the algorithm, instigating a

“diagnostic deadlock.” In such cases, the predictive algorithm could exacerbate a diagnostic

delay and be worse than nothing.

Diagnostic suspicion bias is probably an inherent risk of most existing sepsis early identifi-

cation algorithms, because almost all use laboratory data and repeated vital sign measurements

as inputs [5]. Furthermore, one review article found that 0-out-of-107 clinical prediction algo-

rithms accounted for “informative observations” (i.e., when the presence or absence of a diag-

nostic observation was not random), [1] which suggests that the topic is generally under-

appreciated. In one paper, Delahanty et al. reported an impressive ROC AUC of 0.93 to 0.97

for ED sepsis prediction. Here is how the algorithm of Delahanty et al handled missing data:

“[w]e replaced unobserved data points with an extreme value (–9,999). In our experience,

extreme values indicating the absence of a feature produce better performance than other
approaches for handling unobserved data.” [18]

In other words, that algorithm imputed an impossibly reassuring lactate result of –9,999

whenever clinicians did not already suspect sepsis enough to send a lactate. This may be close

to a predictive algorithm determining that if the clinician did not check a lactate, then the

patient must not have sepsis. Such an assumption may lead to better performance, but it will

not help recognize sepsis before the clinicians have enough concern to order tests.

In this report, we explored predictive algorithms that did not rely on clinical suspicion and

diagnostic testing. We developed the Bland Model which only relied on data available for

nearly all patients at triage. Unsurprisingly, using only bland data as inputs to the model

yielded middling predictive performance (ROC AUC 0.77; 95% CI: 0.68–0.84 in the MGH val-

idation dataset). A similar vital-signs-plus-demographics sepsis prediction model described by

Horng et al. also had unimpressive performance (ROC AUC 0.67) [19]. Overall, it seems that a

model based on such limited input data can offer only non-specific performance. As a practical

matter, such a model would translate to some combination of frequent false alarms and/or

poor sensitivity. Perhaps the best use of bland data algorithms is to suggest when clinicians

should consider sending additional diagnostic testing that allows for better predictive perfor-

mance (e.g., “consider sending serum lactate to screen for sepsis” or “consider recheck of vital

signs within the next hour”).

If bland hospital data are too non-specific, another approach we evaluated was the use of

objective yes/no auxiliary queries. These queries are analogous to conventional clinical deci-

sion rules. For example, the PERC rule for pulmonary embolism asks objective questions such

as whether a patient has unilateral leg swelling. In principle, using auxiliary queries that can be

answered objectively at triage could enable better algorithm performance without reliance on

diagnostic testing. Indeed, we found that our “Essential Model” trended toward improved

AUCs in all cohorts (note: in this exploratory paper, we did not formally assess statistical sig-

nificance of these differences).

It is worth noting that both the Essential Model and the Bland Model performed better in

the random cohorts, based on higher ROC AUCs. By contrast, when datasets were supple-

mented with additional potential sepsis cases, i.e., patients with hypotension and antibiotic

treatment, there was a trend towards worse ROC AUCs, especially for the Bland Model which

predicted sepsis solely on the basis of triage vital signs. [Note: This was likely explained because

selecting for ED patients with hypotension and antibiotic treatment yielded two related sub-

cohorts: i) truly septic patients; and ii) hypotensive patients who were treated for bacterial

infection in the ED but did not ultimately meet the formal Rhee criteria for sepsis. It was likely
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more challenging for the classifiers to predict sepsis after the datasets were supplemented with

a substantial number of patients who appeared septic yet did not meet sepsis criteria].

Of note, all investigational models clearly outperformed the qSOFA score, which is the

detection algorithm recommended by the Surviving Sepsis Campaign [20]. Improved sepsis

prediction offers the prospect of reducing antibiotic administration delays, which has been

associated with reduced mortality at our institution [21] and in a range of other reports [22].

Another key issue identified for predictive algorithms is dataset shift [10]. Dataset shift

occurs when the relationship between input parameters and the predicted outcome changes

through time. In essence, dataset shift represents a form of overfitting to early datasets. We

observe that predictive performance of our complex “Full Model” did degrade from its training

set to its hold-out test set. On the other hand, the simpler Essential Model showed consistent

performance in testing versus validation, despite the passage of two years, the roll-out of a new

EMR, and the advent of US CMS SEP-1 quality measures [23]. This illustrates the old dictum

that increased model complexity raises the risk of overfitting and reduced external validity.

Finally, for any predictive model, it is important to consider biases associated with social

determinants of health, including race/ethnicity and gender. Although the inputs to the inves-

tigational predictive models seem objective datapoints, there are well-established biases in how

accurately such diagnostic data are measured [24] including racial biases involving pulse oxim-

etry [25] and temperature [26]. To this end, we evaluated whether there were any independent

associations between the Essential Model and race/ethnicity and gender as predictors of sepsis

and did not find any. We also did not find that non-white/Hispanic nor non-male patients

were more likely to have “errors” in prediction. On the other hand, there remains the possibil-

ity that our original inclusion criteria (see Fig 1) may have led to some form of bias in

upstream subject selection, and there may be biases in the data that underlie the Rhee sepsis

criteria.

There are other potential limitations to consider. Firstly, we only evaluated a logistic regres-

sion model using greedy-forward feature selection. Our intent was to explore the feasibility of

sepsis prediction solely with information available upon triage (i.e., vital signs and a few inter-

view questions), to avoid any reliance on diagnostic testing results. We explored these exem-

plary classifiers over two multi-year time intervals and across four different hospitals. This

analysis establishes a proof-of-principle and benchmarks for classifier performance. Future

investigation should consider additional classification methods, and consider how to further

optimize performance, especially for the “high specificity” thresholds. Secondly, although we

included patients from four hospitals—including two urban medical centers and two commu-

nity hospitals—our patients were all sourced from a single geographic region. As the literature

demonstrates, performance of sepsis prediction algorithms can vary in different settings.

Thirdly, our randomly selected cohorts did not contain a large fraction of septic patients, and

so we artificially added additional patients who were likely septic based on other EMR query

criteria (as detailed in the Methods section). It is possible that there was bias in our criteria for

finding those additional septic patients, i.e., additional septic patients were not truly represen-

tative of actual septic patients. It is notable that the ROC AUCs for the true random sub-

cohorts (which included truly randomly selected septic patients) were at least as good, and this

suggests that any bias from adding those additional septic patients was at worst a minor factor.

Fourthly, our auxiliary query questions were answered by blinded chart reviewers, rather than

actual clinicians treating patients. In practice, clinicians may suffer “pop-up fatigue” and fail to

accurately respond to the auxiliary query. Perhaps auxiliary queries would be most practical if

minimized with optimized trigger criteria; kept as simple as possible; and suppressed if suffi-

cient data are already available. The Bland Model could be used to trigger the auxiliary ques-

tions pop-up when there is elevated sepsis risk.
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In summary, algorithms that rely on suspicion-dependent inputs may provide false reassur-

ance precisely when sepsis isn’t already suspected, plausibly causing delays in testing and diag-

nosis. This potential bias appears to be underappreciated in many prior reports. We proposed

two alternative approaches to avoid this risk. While both alternatives may carry some down-

side (non-specific performance for algorithms using bland hospital data only; and pop-up

fatigue for auxiliary queries), they may be preferable to biased algorithms with potential harm

to patients. This analysis is intended as a case study to raise awareness about diagnostic suspi-

cion bias and illustrate potential strategies to address the issue.

Fig 1. Selection of encounters for inclusion in Interval-1. Subjects from Interval-1 included randomly selected

subjects plus additional patients who met the CMS SEP-1 criteria for sepsis. We excluded n = 20 of encounters who

were duplicates. The presence or absence of sepsis was determined using the Rhee sepsis criteria. ED, emergency

department; HR, heart rate; ICU, intensive care unit; MGH, Massachusetts General Hospital; qSOFA, quick sequential

organ failure assessment; SBP, systolic blood pressure; SEP-1, Center for Medicare and Medicaid Services severe

sepsis/septic shock bundle performance measure; SIRS, systemic inflammatory response syndrome. * n = 57

encounters from random selection with sepsis.

https://doi.org/10.1371/journal.pdig.0000365.g001
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Methods

Setting and participants

Under local IRB approval, this research study was conducted with a waiver of informed consent

as per US 45CFR46.116(d). We retrospectively studied adult (�18 years) patients who were

treated in EDs of our medical system. Patients were eligible if they had any one of the following

documented at any time during their ED stay: systolic blood pressure [SBP]< 100 mmHg; heart

rate [HR]> SBP (i.e., positive “shock index”); qSOFA score� 1; [20] 2 or more SIRS criteria;

[27] or admission from the ED to an intensive care unit. This selected for a pool of patients with

relatively minor vital sign abnormalities and/or admission to an ICU regardless of vital signs.

Subjects were selected for Interval-1 (April 1, 2014 through March 31, 2016) for a single

urban, academic ED. We randomly selected 750 patients from Interval-1. Given the small pro-

portion of septic patients included in this random cohort, we augmented our study population

with additional septic patients: we included additional patients who had met CMS SEP-1 cri-

teria for sepsis (which involved ICD-9 discharge diagnosis; this cohort had been previously

analyzed by our team) [21]. The sample size for Interval-1 was determined a priori through

Monte Carlo simulation for sufficient statistical power to estimate the area under a receiver

operating characteristic curve (ROC AUC) +/- 0.05. Subjects from Interval-1 were randomly

subdivided into a training cohort (70% of patients from Interval-1) and testing cohort (30% of

patients from Interval-1). Subject selection for Interval-1 is described in Fig 1.

After initial development and testing of the investigational sepsis prediction models, we

sought additional prospective validation for multiple medical centers, including a second

urban, academic ED plus two community hospital EDs, all of which have publicly reported

sepsis care metrics close to both State and National Averages (see characteristics of each hospi-

tal reported in S1 File). We examined Interval-2, which started immediately after the end of

Interval-1 and spanned another two years (April 1, 2016 through March 31, 2018). We ran-

domly selected 100 subjects from each of the four hospitals’ EDs. Given the small proportion

of septic patients included in this random cohort, we augmented our study population with

additional septic patients. For Interval-2, we no longer had ready access to ICD-9 codes,

because our institution switched to a new electronic data warehouse system in 2016. Therefore,

to identify a cohort with high likelihood of sepsis, we selected 100 patients with hypotension

documented at some time during their ED visit who also received ED antibiotics. The sample

size for Interval-2, i.e., 800 total subjects, was selected pragmatically based on our available

human resources to perform chart review. Subject selection for Interval-2 is described in Fig 2.

Variables

ICD-9/ICD-10 data were not available for Interval-2 subjects. Therefore, the study outcome,

i.e., presence/absence of sepsis was determined using the Rhee sepsis criteria, [28] which only

requires clinical data. We applied the Rhee sepsis criteria consistently to all subjects from both

Interval-1 and Interval-2.

For investigational predictors, we analyzed “bland clinical data” that would ordinarily be

available for every ED patient (triage vital signs; demographics; and past medical history ele-

ments listed in the EMR). We also evaluated the individual symptoms that were described in

the triage note and the initial history of present illness (HPI). Lastly, we analyzed the responses

to “auxiliary queries” which were yes/no responses to simple, objective questions:

a. Was there a report of fatigue or altered mental status?

b. Was there a documented concern for bacterial infection prior to arrival in the ED (e.g., refer-

ral from outpatient clinic)?
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c. Was there a report of a “bacterial infection symptom complex” (BISC)? The BISC criteria

were positive if a patient has at least one localizing symptom (e.g., chest pain, flank pain, or

leg pain) and at least one constitutional/inflammatory symptom (e.g., fever, or purulence).

In patients with any vital-sign abnormalities, BISC criteria have been found to be specific

Fig 2. Selection of encounters for inclusion in Interval-2. Subjects from Interval-2 included randomly selected

subjects plus additional patients who had hypotension documented at some time during their ED visit and also

received antibiotics in the ED. Some patients were missing data necessary for calculation of the Essential Model and

were excluded. The presence of absence of sepsis was determined using the Rhee sepsis criteria. BWH, Brigham and

Women’s Hospital; ED, emergency department; HR, heart rate; ICU, intensive care unit; MGH, Massachusetts

General Hospital; NSMC, North Shore Medical Center; NWH, Newton Wellesley Hospital; qSOFA, quick sequential

organ failure assessment; SBP, systolic blood pressure; SEP-1, Center for Medicare and Medicaid Services severe

sepsis/septic shock bundle performance measure; SIRS, systemic inflammatory response syndrome. *Encounters from

random selection cohort with sepsis: MGH: n = 7; BWH: n = 6; NWH: n = 1; NSMC: n = 2.

https://doi.org/10.1371/journal.pdig.0000365.g002
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but not sensitive for sepsis [29]. Additional details about the BISC criteria are provided in

S1 File.

A detailed list of investigational predictors is provided in S1 File.

Data sources / Measurement

Vital signs, demographics, labs, hospital medications, hospital outcome, and clinician notes

were downloaded electronically from the hospital electronic data warehouse, which archives

data from the electronic medical record (EMR). To confirm the validity of the downloaded

data, for each parameter, at least 20 cases were randomly reviewed and compared to the sub-

jects’ clinical data displayed in the EMR, to confirm perfect agreement, including relevant

time-stamps.

Vital signs were subsequently post-processed. From the training set, we determined vital-

sign cut-offs at which a monotonic association saturated, and we clipped the value of the vari-

able at these points, determining saturation cut-offs for each parameter from the training set.

For body temperature, we created variables for hyperthermia and hypothermia, separately. See

S1 File for further details of the post-processing. As well, we computed the “pulse pressure”

(systolic minus diastolic blood pressure) and the “shock index” (ratio of heart rate to SBP).

For the auxiliary queries, we performed blinded chart review. First, we electronically iso-

lated the text for the triage note and the ED clinicians’ HPI and placed the records in a random

order. Two independent trained reviewers, blinded to all other information (e.g., blinded to

date, diagnostic results, outcome, and any subsequent clinical documentation), reviewed the

triage note and HPIs. Each completed a web-based data entry form [30,31] that included

whether various symptoms were present and also coded the responses to the three “auxiliary

queries” after review of the clinical documentation. Completed data entry forms were com-

pared, and disagreements resolved by a third abstractor if needed. Cohen’s kappa was com-

puted for reviewer-coded parameters.

Biostatistical analysis

We developed three investigational sepsis prediction models using different sets of candidate

predictor features:

• The candidate predictors for the “Bland Model” were restricted to bland hospital data, i.e.,

the patient’s age and initial set of vital signs; this algorithm could automatically be applied to

all triage patients;

• Next, we developed the “Essential Model” which used the same candidate predictors as the

Bland Model; as well as a single binary indicator for the presence of any major chronic

comorbidity; and the three binary auxiliary queries;

• Lastly, we developed the “Full Model” which allowed for the use of all investigational bland

hospital data elements, including granular past medical history data elements and granular

data elements extracted from chart review of the triage note and clinician HPI. The purpose

of the “Full Model” was to establish an upper bound for how well sepsis could be predicted

given all clinical data available at triage.

Each of these models were trained using septic and non-septic patients from the training

cohort (70% of the subjects from Interval-1). Each model was developed as an L2-regularized

logistic regression model, using a greedy forward feature selection approach, adding candidate

features one-by-one to optimize the ROC AUC.
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Each investigational model was applied to the training, testing, and validation cohort

(except that the Full Model was not applied to the validation cohort because our institution

changed EMR systems in 2016, including changes to how specific medical history elements

were represented during 2014–2016 versus 2016–2018).

95% CI for each ROC AUC was computed using DeLong’s Method [32]. For this explor-

atory study, no formal biostatistical hypothesis testing was undertaken. We also applied the

qSOFA score to each cohort, as a comparator. We explored the diagnostic test performance

(sensitivity, specificity, and F1 score) of the “Essential Model” at two specific thresholds for the

classifier: a “high-sensitivity” threshold intended as a high sensitivity screen for sepsis at the

expense of some false-positives, and a “high-specificity” threshold intended to identify patients

who, statistically, probably do have sepsis.

We audited results for biases that may be related to social determinants of health including

race-ethnicity and gender: for all subjects in Inteval-2, we assessed whether the relationship

between the Essential Model and the outcome (i.e., sepsis) was independently associated with

race/ethnicity (non-white or Hispanic) or gender through multivariable analysis. Also, we

assessed whether incorrect predictions by the model were associated with race/ethnicity and

gender. We repeated this for both “high-sensitivity” and “high-specificity” thresholds. Addi-

tional details of this audit are provided in S1 File.

Supporting information

S1 File. Supplementary methods include details on processing continuous variables

sourced from the EMR; method for adjudication of “auxiliary queries”; and method for

adjudication of major comorbidities. Supplementary results include subject characteristics

for additional hospitals; additional details regarding model composition; and essential model

error analysis.

(PDF)
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