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Abstract—Lumped-parameter time-varying electrical circuit
analogs for the cardiovascular system are frequently used in
medical research and teaching for simulating and analyzing hemo-
dynamic data. Pulsatile models provide details of the intracycle
dynamics of each heart beat. In some settings, however, such
as when tracking a hospital patient’s hemodynamic state over
time, it is more useful to dynamically track the beat-to-beat or
intercycle dynamics. Rather than introducing heuristic averaging
during the model-building step, as is done in existing nonpulsatile
models, we apply a short-term, cycle-averaging operation to the
differential equations of the underlying pulsatile model to obtain
cycle-averaged models. The cycle-averaging method preserves the
dependence of the output variables on the model parameters.
In this paper, we apply cycle averaging to a simple pulsatile
cardiovascular model to derive a cycle-averaged model for cardio-
vascular dynamics. The resultant model captures the intercycle
dynamics with relatively small approximation errors for a large
range of perturbations in important system parameters.

Index Terms—Cardiovascular dynamics, cycle-averaged
models, cycle averaging, nonpulsatile models, patient monitoring,
pulsatile models.

I. INTRODUCTION

A. Background

Medical teaching and research have a rich tradition of using
simple mechanical or electrical models to describe and eluci-
date cardiovascular phenomena. This tradition dates back over
a century to the work of Frank and his associates, who used
a lumped-parameter mechanical model of the arterial system
to analyze the arterial pressure pulse [2], [3] and from this
estimated cardiac stroke volume [4]. Such models were later
implemented on analog computers [5], and subsequently in
software on digital computing platforms. These models—par-
ticularly in the form of electrical circuit analogs—have been
used in teaching physiology [6], [7], as well as in the research
setting, where they aid in the interpretation of experimental
observations, serving as a rational framework that either links
an intervention to the observed system-level response (the for-
ward problem) or a system-level observation to the underlying
changes in the cardiovascular system (the inverse problem).
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Integration and interpretation of hemodynamic data streams
are particularly important in the clinical environment of the
intensive care unit (ICU), where patients are typically heavily
instrumented and frequently physiologically unstable. Given
the vast amount of clinical information collected from each
patient in intensive care, computational models can play an
important role in integrating a patient’s hemodynamic data
streams into a common framework, analyzing and interpreting
the available information, and presenting resultant pathophysi-
ological hypotheses to the clinical staff in an efficient manner
[8]. To employ computational models in such a way, one needs
to match the model structure to the characteristics of the data
streams collected at the patient’s bedside. This matching must
be done both in terms of the time scales involved and the com-
putational complexity of the forward and inverse problems to be
solved. In developing cycle-averaged models of cardiovascular
dynamics from pulsatile ones, we aim to expand the repertoire
of model structures available for matching to clinical data.

B. Pulsatile, Nonpulsatile, and Cycle-Averaged Models

Models of cardiovascular dynamics are called pulsatile if they
capture the intrabeat (or intracycle) features of individual pres-
sure, flow, and volume waveforms. Pulsatile behavior can be
simulated by lumped-parameter circuit models in which the car-
diac chambers are modeled as time-varying capacitors that cycle
between a low (systolic or ejection) state and a high (diastolic or
filling) state. To understand and/or simulate interbeat (or inter-
cycle) dynamics, however, these models tend to be too detailed
and computationally burdensome, as the simulation time step
generally has to be chosen much shorter than the cardiac cycle
length.

Nonpulsatile models simulate the time-average behavior of
cardiovascular variables and thus reduce the computational
overhead associated with pulsatile models [9], [10]. In order to
derive nonpulsatile models, an implicit averaging step has to
be taken to transform the pulsatile nature of cardiac outflow to
an average flow over the cardiac cycle. For example, Kappel
and Peer [10], based on work by Grodins [9], used a heuristic
formula to relate stroke volume to average ventricular end-di-
astolic volume, which in turn they related to average pre- and
after-load and average cardiac contractility. Similarly, Boyers
and co-workers [11] made stroke volume a function of average
central blood volume and average autonomic activity.

Rather than introducing heuristic averaging during the
model-building step, one can apply a short-term cycle-aver-
aging operation to the differential equations of the underlying
pulsatile model. Such an approach, with certain systematic
approximations, leads to cycle-averaged models, and has found
much applicability in the area of power electronics [12]. The
cycle-averaging process preserves the dependence of the output
variables on the model parameters, which is a fundamental

1057-7122/$20.00 © 2006 IEEE
Authorized licensed use limited to: MIT Libraries. Downloaded on November 19,2023 at 14:08:56 UTC from IEEE Xplore.  Restrictions apply. 



2460 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 11, NOVEMBER 2006

advantage over the a priori determination of such relationships
during the model-building step for nonpulsatile models. In
some cases, linear and time-invariant cycle-averaged models
can be derived for nonlinear, time-varying pulsatile models
[13]. A rich set of analysis tools can then be applied to these
cycle-averaged models.

C. Goals and Outline of the Paper

In this paper, we show how to derive a cycle-averaged
model from a pulsatile model. Such cycle-averaged models are
intended for use in tracking patient hemodynamic state and
parameters in the ICU.

There are several simplifying assumptions we have made in
our models of cardiovascular dynamics. We assume the ele-
ments in the systemic (or peripheral) circulation are linear and
time invariant (LTI). Although LTI inertial and distributed-pa-
rameter effects are easily incorporated into the averaging
framework, we omit them as they are relatively insignificant
for the slow intercycle variations we intend to capture with our
cycle-averaged models. Similarly, we neglect the baroreflex and
cardiopulmonary control mechanisms that, on a beat-to-beat
timescale, tightly control mean arterial blood pressure (ABP).
These mechanisms act on time scales of a heart cycle or longer,
however, they typically use cycle-averaged rather than instan-
taneous (or pulsatile) quantities as their inputs [14], [15]. Thus,
it is not necessary to model them for purposes of deriving a
cycle-averaged model. Instead, once a cycle-averaged model
has been obtained, the various control loops can be wrapped
around it if required.

The outline of this paper is as follows. In Section II, we de-
scribe the basic cycle-averaging methodology and apply it to the
well-known Windkessel model [2], [3]. In Section III, we de-
scribe the pulsatile cardiovascular model to which we later apply
the cycle-averaging methodology. After some additional back-
ground on cycle averaging in Section IV, we derive in Section V
a cycle-averaged representation for the pulsatile cardiovascular
model introduced in Section III. Simulation results obtained
using this cycle-averaged model are presented and evaluated in
Section VI. We end with a summary and directions for future
work.

II. CYCLE-AVERAGED WINDKESSEL MODEL

The Windkessel model, whose circuit representation appears
in Fig. 1, was originally used to model the ABP pulse [2], [3].
The electric circuit analogs for cardiovascular variables and
components (not all present in Fig. 1) are: current for blood
flow, voltage for blood pressure, charge for blood volume,
ideal diodes for heart valves, resistance for valvular
or vascular resistance to blood flow, inductance for blood
inertia, and capacitance for vascular or compartmental com-
pliance. Elastance is defined as the inverse of capacitance or
compliance. In the Windkessel circuit, is the total peripheral
resistance, while is the lumped compliance of the arterial
tree. The pressure drop across is the ABP . The heart’s
output is modeled as an impulsive current source given by

(1)

Fig. 1. Windkessel (top) and cycle-averaged Windkessel (bottom) model
circuit representations with representative pulsatile and cycle-averaged ABP
waveforms.

where SV is the stroke volume and is the onset time of the
th cardiac cycle.
The state-space equation for the Windkessel circuit is as

follows:

(2)

where the time argument has been dropped for simplicity.
The pulsatile ABP waveform that results from simulating the

model (2) with is shown in Fig. 1. The pulse pressure
(maximum ABP–minimum ABP), , in each cardiac cycle
is given by

(3)

We now describe the basic cycle-averaged methodology (see
[12], [16], [17]) and apply it to the Windkessel model to derive
the cycle-averaged Windkessel model. Our starting point is the
complex Fourier series representation for a signal on the
interval , which can be written as

(4)

The are the complex Fourier series coefficients, also re-
ferred to as the Index- cycle averages of and thus denoted
by . These complex coefficients are given by

(5)

thanks to the orthogonality properties of the basis functions
on an interval of length . For any real signal

, and are complex conjugates

(6)

where the superscripts and denote real and imaginary parts,
and denotes complex conjugation.

If were strictly periodic with period , then the
would be constants, independent of . For waveforms that de-
viate only slowly and/or slightly from such periodicity, which
is the case of interest to us, it is reasonable to assume that the

will have only slow and/or slight departures from con-
stant values, and this can be exploited when making modeling
approximations.
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From (5), with , we obtain the standard formula for the
cycle average of the variable , namely

(7)

This Index-0 cycle average is simply the dc term in the Fourier
series (4), and is also the short-term average of the variable
that we wish to track in our cycle-averaged models. We will
often simply write for . In the cardiovascular cir-
cuit models where we apply these expressions, is the length of
the cardiac cycle, assumed to be known and essentially constant
over the analysis interval of interest, though possibly different
from one analysis interval to another.

By differentiating (5) under the assumption of constant and
setting , we obtain an expression for the derivative of the
Index-0 cycle average

(8)

By applying (7) and (8) to the state-space equation (2) for
the Windkessel circuit, and taking note of (1), we obtain the
following Index-0 cycle-averaged Windkessel model (one could
also directly average the circuit, see [18]):

(9)

It follows from (9) that in steady state we have the following
relation between SV and :

(10)

It follows from (3) and (10) that is given by

(11)

Because the pulsatile Windkessel model is LTI, the cycle-av-
eraged Windkessel model (9) has the same governing differen-
tial equation and circuit representation as the pulsatile Wind-
kessel model (2). Of interest is the fact that the time constant in
both the pulsatile and the cycle-averaged Windkessel models is

.
Fig. 1 shows the pulsatile ABP waveform from a simulation

of the Windkessel model (an analytical solution is also straight-
forward), along with the cycle-averaged ABP waveform ob-
tained from a simulation of a cycle-averaged Windkessel model.
The time constant with which the average rises to its steady state
equals the time constant of the decay on each pulse. It is clear
that in order to capture the transient beat-to-beat ABP dynamics,
it would for many purposes suffice to capture its cycle average,
and that the averaged model is well-suited to efficiently repre-
senting the dynamics of the cycle average.

Fig. 2. SPCVM uses a 3-way switch which allows for simpler analysis of the
circuit. V and V are defined here for future reference. For simplicity, only one
diode is used, unlike in the models in [13] and [19], to facilitate development of
the averaged model.

III. SIMPLE PULSATILE CARDIOVASCULAR MODEL

When a circuit has nonlinear and/or time-varying elements,
cycle averaging is not as easily applied as in the Windkessel
case. In this section, we turn to a more elaborate but more real-
istic model that is time varying and nonlinear; we apply cycle
averaging to this model in the next section. This model, the
simple pulsatile cardiovascular model (SPCVM), was studied
in [13], [19] (see also [20]). It has a single ventricular com-
partment, and is useful in studying systemic vascular conditions
such as hemorrhaging in the peripheral circulation. Fig. 2 illus-
trates the circuit representation for the SPCVM, where is
the arterial compliance, is the venous compliance, is
the time-varying ventricular compliance, is the inflow re-
sistance to the ventricle, is the outflow resistance from the
ventricle, and is the total peripheral resistance. The voltage

is the ventricular pressure, is the central venous pressure
(CVP),1 and is the ABP. The ventricular volume is . The
voltage source is the zero-pressure filling volume for the
body’s veins, while is the pressure in the thoracic cavity.

The elastance function for the ventricular
compartment in the SPCVM is taken to be a piecewise-linear
periodic function

for

for

for

(12)

where the period is the duration of the cardiac cycle, is
the end-systolic elastance, and is the end-diastolic
elastance. Such a time-varying elastance function approximates
human data quite well [21].

The parameters used in the SPCVM, including the initial con-
ditions for our simulations, are given in [1]. These parameters
represent typical values for a 70-kg male human [22], and, when
used with (12), result in reasonable approximations of the wave-
forms during the cardiac cycle. For simplicity, throughout this
paper we have set and equal to 0 mm Hg. The derivation
of a cycle-averaged model with nonzero and/or would
require only a trivial modification of the cycle-averaged model
derived here.

1The pressure acrossC is more analogous to peripheral venous pressure, but
we nevertheless refer to it as CVP here.
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Fig. 3. Waveforms generated over a single cardiac cycle of the SPCVM with
T = 1 s. This circuit has four regions of operation.

TABLE I
DEFINITION OF THE FOUR REGIONS IN THE SPCVM

We can define switching functions for the switch and diode
in the SPCVM as follows: equals 1 when the switch is in
position 1, and 0 otherwise; equals 1 when the switch is
in position 2, and 0 otherwise; equals 1 when the switch
is in position 3, and 0 otherwise; and equals 1 when the
diode is conducting (between and ), and 0
otherwise.

The SPCVM has four regions of operation, corresponding di-
rectly with the four periods of the cardiac cycle: isovolumic con-
traction (I), ejection (II), isovolumic relaxation (III), and filling
(IV), as shown in Fig. 3. The four regions are determined by the
position of the switch and the state of the diode, as shown in
Table I.

With the switching functions described above, and with
, and as state variables,2 we have a state-space

description for the SPCVM given by

(13)

(14)

(15)

where the parameters are
fixed or slowly varying, and we have again dropped the time
argument for notational simplicity. More compactly, we can
write

(16)

2Q (t) is used as a state variable instead of V (t) because it ensures smaller
numerical errors, as the term dC (t)=dt does not appear in the state-space
model.

where is the vector of state variables, and the matrix
is equal to

(17)

The cycle averaging for this model is considerably more in-
volved than for the Windkessel model, due to the presence of
state-dependent switching functions.

IV. CYCLE-AVERAGE EXPRESSIONS FOR THE SPCVM

To apply the cycle-average operators to our state-space model
in (13)–(15), we need additional expressions for derivatives of
Index- cycle averages and for the cycle averages of the prod-
ucts of two variables, such as , or three variables,
such as .

By differentiating (5) with fixed , we easily obtain an ex-
pression for the derivative of the Index- cycle average

(18)

The Index- cycle average of the product of two signals
and is given by the easily verified discrete convolution for-
mula for the product of the coefficients of two polynomials

(19)

where we have once more dropped the time argument from the
expression for notational simplicity. The Index- cycle average
of the product of three signals, , , and , can be ob-
tained by applying the discrete convolution relationship (19) to

.
In our application, we can neglect many of the Fourier se-

ries coefficients, making these formulas much simpler to apply.
Assuming only the Index-0 and Index-1 cycle averages are sig-
nificant, we have

(20)

(21)

(22)

(23)

(24)

(25)

To obtain a cycle-averaged model, one can simply apply the
formulas derived in Section II and in this section to a state-space
model. If we represent circuit variables by their Index-0 and
Index-1 (and, when necessary, Index-2) cycle averages, but keep
the Index-1 and any Index-2 cycle-averages constant, we end up
with what we shall call an Index-0 cycle-averaged model.
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Fig. 4. Circuit schematic for the SPCVM in Region I.

V. INDEX-0 CYCLE-AVERAGED MODEL

To obtain an Index-0 cycle-averaged model for the SPCVM,
we begin by deriving an approximation for the diode turn-on
time .

A. Approximation for

We first need to express the Index-0 cycle average of the
switching function for the diode in terms of cycle averages
of , , and . We do not require such an approximation for
the other switching functions because their Index-0 cycle aver-
ages are not state-dependent. An approximation for can be
obtained on examination of the relevant circuit waveforms in
Region I (see Table I) of the model’s operation. In the discus-
sion that follows, we drop the time argument for notational
simplicity.

Fig. 4 shows the SPCVM circuit in Region I, where the switch
is in position 2 and the diode is open. In this region, the charge

is fixed, but pressure is increasing since the elastance
function is increasing linearly. At the same time, the arterial
pressure is decreasing as discharges into . The diode

begins conducting when equals .
Since the capacitance is very large, we can assume is

essentially constant, and hence that , where is the
Index-0 cycle average of . Assuming Region I begins at time

, in Region I is given by

(26)

where we have used the fact that in Region I.
At the beginning of Region I, and , so

(27)

If we assume the relative ripple on the arterial pressure
to be small,3 we can assume that . The approximate
diode turn-on time, , is then given by solving

(28)

3Other approximations for t do not make this assumption; however, the im-
provement in results does not justify the added complexity.

Fig. 5. LHS and RHS of the approximation of the equation defining ^t .
The left-most intersection of V and V defines t , while the LHS and RHS
of (28) define ^t .

for , which yields

(29)

Fig. 5 plots both sides of (28) on the same axes as the
steady-state waveforms for and obtained with the nom-
inal SPCVM parameters in [1]. The actual is given by the
left-most intersection of and , while is given by the
intersection of the lines representing the left-hand side (LHS)
and right-hand side (RHS) of (28). The error in approximating

is only about 4% for the steady-state waveforms shown in
Fig. 5.

The Index-0 cycle average of the waveform is then given
by applying the Index-0 cycle-averaging operator to to
obtain

(30)

If we were to approximate as a fixed constant, the re-
sulting Index-0 cycle-averaged model would be linear and time-
invariant. However, in (30) depends nonlinearly on state
variables in the circuit, making the cycle-averaged model non-
linear, though still time invariant.

B. Fourier Analysis

To derive an Index-0 cycle-averaged model, one needs to find
nominal values at which to fix the Index-1 and higher cycle av-
erages. From simulations of the SPCVM, we justified that the
Index-2 and higher cycle averages can be neglected for all the
SPCVM waveforms except the ventricular volume and the
ventricular elastance . We then numerically (or partially ana-
lytically in the case of and ) calculated the relevant Index-1
and Index-2 cycle averages using steady-state Fourier series rep-
resentations of all the hemodynamic waveforms and switching
functions from our simulations. The steady-state SPCVM wave-
forms we used were obtained from simulations with the nominal
SPCVM parameters [1]. The results are shown in Table II.

In addition, we implemented an Index-0 dependence for the
Index-1 cycle averages of the ABP, and , and for the
Index-1 cycle averages of the ventricular volume, and

. The latter four Index-1 cycle averages were scaled by
and , since (11) and (10), respectively, show that pulse
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TABLE II
VALUES OF CYCLE AVERAGES IN STEADY STATE

pressure and stroke volume are proportional to in the
Windkessel model. We therefore set

(31)

(32)

(33)

(34)

where the nominal values of the Index-1 cycle averages were
taken from Table II. (One could also consider scaling the
Index-2 cycle averages and by the same factor as in
(31)–(34). However, from simulations of the Index-0 cycle-av-
eraged model, we observed that such a scaling increases the
resulting error, perhaps because the phase relations of the
Index-1 and Index-2 terms change in the pulsatile circuit as
conditions change.)

C. Index-0 Cycle-Averaged Model

Using the values listed in Table II and applying the cycle-
average operators from the previous section to (13)–(15), we
obtain an Index-0 cycle-averaged model

(35)

where the time argument has again been dropped for notational
simplicity. Under our assumptions on the Index-1 and higher
cycle averages, we can rewrite (35), using (20)–(25), as

(36)

where is dependent on the Index-0 cycle
averages of the switching functions and the parameters ,
and where is dependent
on the Index-0 and Index-1 cycle averages of the switching
functions, the Index-1 cycle averages, , the Index-2 cycle
averages of and , , and the parameters . [Because of

Fig. 6. Index-0 cycle-averaged model with two voltage-dependent voltage
sources and two current-dependent current sources.

the Index-1 adjustments in (31)–(34), actually varies with
.]

Note that the state variables in this cycle-averaged model are
the Index-0 cycle averages of the state variables in the SPCVM.
Furthermore, it can be verified that the total charge in this cycle-
averaged model is conserved, and is equal to the total cycle-
averaged charge in the SPCVM.

Initially, the parameters in and are set to the nominal
SPCVM parameters in [1], which we shall call the nominal pa-
rameter set , and the Index-1 and Index-2 cycle averages
are fixed at the values given in Table II. To start the cycle-aver-
aged model in steady state, the initial conditions for the
Index-0 cycle-averaged model are set equal to the numerically
calculated cycle averages of the steady-state simulated wave-
forms, , of the SPCVM using the parameters .

Due to truncation error in the Fourier series approximations
leading to (36), however, setting in the Index-0
cycle-averaged model leads to a nonzero value for

(37)

in the Index-0 cycle-averaged model. This violates the assump-
tion that the circuit starts in steady state with a fixed charge (or
blood volume). To correct for this truncation error, we can sub-
tract the fixed correction term from the right side of (36). The
Index-0 cycle-averaged model we propose is then given by

(38)

One alternative to using this correction term would be to use
more Index-2 Fourier series terms in (36); such higher-order
approximations were only used for expressions involving
and .

We can also construct a circuit model that captures the dy-
namics of the Index-0 cycle-averaged model using voltage-de-
pendent voltage sources and current-dependent current sources.
Such an Index-0 cycle-averaged circuit, based on the SPCVM
state space model in (13) through (15) (or by direct averaging
of the circuit in Fig. 2, see [18]), is shown in Fig. 6. Note that
the LTI components of the pulsatile circuit are unchanged by
the cycle averaging; they are in the same location, imposing the
same constraints, but now on the averaged rather than instanta-
neous quantities. In this averaged circuit, the average compli-
ance for the left ventricle, , is equal to (see [13]
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Fig. 7. Comparison of the transient responses of the Index-0 cycle-averaged
model to the calculated cycle-averaged SPCVM waveforms for several step
changes in resistance R . At t = 15 s, R was stepped up to 1.4 PRU, at
t = 30 s, R was stepped down to 1 PRU, and at t = 45 s, R was stepped
down to 0.6 PRU. (a) Ventricular volume. (b) ABP and central venous pressure.

for a derivation), and the source is introduced to properly
convert into . Using and from the circuit in Fig. 2,
we can write

(39)

(40)

where and are introduced from the Index-1 cycle aver-
ages of , , , and , and fixed Index-2 cycle averages of

and .

VI. RESULTS AND DISCUSSION

Using the Index-0 cycle-averaged model (38), we obtained
simulation results for typical transient responses to step changes
in , the systemic vascular resistance, and in , the length of
the cardiac cycle. We decided on these two parameters because
both are significant hemodynamic variables in the clinical set-
ting, and the cycle-averaged model is sensitive to both.

Fig. 7 shows the transient responses of the Index-0 cycle-av-
eraged model for s, during three step changes in systemic
vascular resistance [in peripheral resistance units (PRU) or
equivalently mmHg/(ml/s)]: at s, was stepped up to
1.4 PRU; at s, was stepped down to 1 PRU; and at

s, was stepped down to 0.6 PRU. In Fig. 7, the Index-0
cycle-averaged model responses are compared to the calculated
Index-0 cycle averages from the SPCVM.

TABLE III
STEADY-STATE ERROR FOR THE VALUES OF R FROM Fig. 7

TABLE IV
TIME CONSTANTS IN STEADY STATE FOR THE TRANSIENT

RESPONSES FOR THE VALUES OF R FROM FIG. 7

The errors inherent in the steady-state cycle-averaged wave-
forms for ABP, ventricular volume, and CVP from this simula-
tion are shown in Table III. The maximum error in the steady-
state cycle-averaged waveforms (i.e., after each transient step
response has settled) was approximately 1.3%, which is accept-
able for the applications envisioned for this model. For this sim-
ulation, the transient error is lower than the steady-state error
and is not reported here. There was no error for the nominal
condition of because the initial conditions of the
model (38) were set such that we began the simulation at the
calculated cycle averages from a simulation of the SPCVM with

, and and set to the values given in Table II.
In steady state, the matrix has three eigen-

values: one corresponding to a fast time constant ( 0.02 s), an-
other to a slow time constant, and one that is zero [13]. The
transient responses on the time scales of our simulation are gov-
erned by the slow time constant. For the simulation of transients
in in Fig. 7, we determined the slow time constant both an-
alytically and empirically in the neighborhood of steady state.
We computed analytical time constants by calculating the eigen-
values of at s ,

s , and s .
We also computed empirical time constants by fitting an ex-
ponential function to the calculated cycle-averaged ABP wave-
form for s , s

, and s .
Table IV compares these two time constants to that obtained by
estimating the time constant as , a reasonable assumption
for the SPCVM since is large and the SPCVM spends most
of the cardiac cycle with . The empirical time constant
for does not match the analytical one as well as
the other cases because the transient response for s
settles to steady state very quickly, making it difficult to prop-
erly estimate the time constant. Nonetheless, the analytical time
constants we obtained are much more accurate than simply es-
timating the time constant as .

Fig. 8 shows the transient responses of the Index-0
cycle-averaged model for three step changes in cardiac
cycle duration : at s, was stepped down to 0.5 s;
at s, was stepped back up to its nominal value of
1 s; and at s, was stepped up to 1.2 s. These values
of correspond to heart rates of 50 beats per minute (bpm)
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Fig. 8. Comparison of the transient responses of the Index-0 cycle-averaged
model to the calculated cycle-averaged SPCVM waveforms for several step
changes in T . At t = 15 s, T was stepped down to 0.5 s. At t = 30 s, T
was stepped back up to its nominal value of 1 s, and at t = 45 s, T was stepped
up to 1.2 s. (a) Ventricular volume. (b) ABP and central venous pressure.

to 120 bpm. In Fig. 8, the Index-0 cycle-averaged model re-
sponses are compared to the calculated Index-0 cycle averages
from the SPCVM. The maximum error in the steady-state
cycle-averaged waveforms is larger than the simulation with
transient changes in —approximately 4%. This happens
when the heart rate goes high, and where our approximation
for is poorest. For heart rate going low, the maximum error
is 1.5%. Again, for this simulation, the transient error is lower
than the steady-state error.

There are significant computational savings obtained when
using the Index-0 cycle-averaged model. Table V compares the
CPU time for the simulation of Fig. 7 versus the time that it
would take to simulate the SPCVM for the transients in ,
not including the computational time for the calculated averages
in Fig. 7. For the simulations, we used a Pentium M 1.7 GHz
personal computer running Windows XP and MATLAB 7.01
(The Mathworks Inc., Natick, MA) with the “ode23” differential

TABLE V
COMPUTATIONAL SAVINGS OBTAINED USING THE

INDEX-0 CYCLE-AVERAGED MODEL

Fig. 9. Envelope of the ABP waveform from the cycle-averaged model (top)
compared to that of the SPCVM (bottom) for several step changes in peripheral
resistanceR . At t = 15 s,R was stepped up to 1.4 PRU, at t = 30 s,R was
stepped down to 1 PRU, and at t = 45 s, R was stepped down to 0.6 PRU.

equation solver. In the table, we also list the maximum step size
limits that can be used in the simulations before output wave-
form degradation occurs.

Finally, we note that systolic and diastolic ABP, both im-
portant variables in clinical settings, can be estimated from the
Index-0 cycle-averaged model. Fig. 9 is an example of such an
approximation, where the ABP waveforms from the cycle-aver-
aged model and the SPCVM are compared for the same transient
as that in Fig. 7. The waveform in the top of Fig. 9 is sinusoidal,
as it was calculated using the formula

(41)

with and modulated as in (31) and (32), respectively.

VII. CONCLUSION

We have presented a cycle-averaging methodology applicable
to dynamic systems in close to periodic operation, and illus-
trated it by application to the classical Windkessel model of
cardiovascular dynamics and to a somewhat more elaborate car-
diovascular model—the SPCVM—that has nonlinear and time-
varying components. The cycle-averaged models are derived by
applying short-term averaging operators to the differential equa-
tions of the underlying pulsatile models, rather than by intro-
ducing heuristic averaging during the model-building step, as is
done in existing nonpulsatile models. Despite the approxima-
tions needed to obtain the cycle-averaged version of SPCVM,
our averaged model captures the intercycle cardiovascular dy-
namics of SPCVM with relatively small approximation errors
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for a large range of perturbations in important system param-
eters. Further simplifications of the SPCVM—for instance, re-
placing by a constant source, eliminating the diode, and sim-
plifying the logic for the switch—lead to pulsatile behavior that
is still representative of cardiovascular dynamics, but that may
have a simpler averaged model. In ongoing work, we are ex-
ploring such simplifications, various extensions, and applica-
tions to fitting real data collected in the ICU by estimating model
states and parameters. In particular, we are exploring the use of
cycle-averaged models that capture beat-to-beat variability in
ABP waveforms to estimate important hemodynamic variables
such as stroke volume, ejection fraction, arterial resistance, and
cardiac output.

APPENDIX I
EXPRESSIONS USED IN THE INDEX-0 MODEL

In this appendix, we give the expressions used for
and .

These expressions were derived using the approximations in
(20)–(25).

The entries of the 3 3 matrix

are as follows:

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

The entries of the 3 1 vector

are given below. The expressions simplify somewhat under the
reasonable assumption that and are negligibly small

(51)

(52)
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