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The treatment of hydrocephalus often involves the placement of a shunt
catheter into the cerebrospinal ventricular space, though such ventricular
catheters often fail by tissue obstruction. While diverse cell types contribute
to the obstruction, astrocytes are believed to contribute to late catheter
failure that can occur months after shunt insertion. Using in vitro microflui-
dic cultures of astrocytes, we show that applied fluid shear stress leads to a
decrease of cell confluency and the loss of their typical stellate cell
morphology. Furthermore, we show that astrocytes exposed to moderate
shear stress for an extended period of time are detached more easily upon
suddenly imposed high fluid shear stress. In light of these findings and
examining the range of values of wall shear stress in a typical ventricular
catheter through computational fluid dynamics (CFD) simulation, we find
that the typical geometry of ventricular catheters has low wall shear stress
zones that can favour the growth and adhesion of astrocytes, thus promoting
obstruction. Using high-precision direct flow visualization and CFD simu-
lations, we discover that the catheter flow can be formulated as a network
of Poiseuille flows. Based on this observation, we leverage a Poiseuille net-
work model to optimize ventricular catheter design such that the
distribution of wall shear stress is above a critical threshold to minimize
astrocyte adhesion and growth. Using this approach, we also suggest a
novel design principle that not only optimizes the wall shear stress distri-
bution but also eliminates a stagnation zone with low wall shear stress,
which is common to current ventricular catheters.
1. Introduction
Hydrocephalus is a disease of the cerebrospinal fluid (CSF) circulation that
often manifests with enlarged cerebral ventricles due to excess CSF in the
cerebral ventricular system [1]. The shunt (figure 1a), a catheter-based CSF
drainage system, has been widely employed to treat this condition. A typical
shunt is made of a proximal (ventricular) catheter (figure 1b), a shunt valve
and a distal catheter. The ventricular catheter is placed in the cerebral ventricles,
and the distal catheter is placed elsewhere in the body for drainage. When the
ventricular CSF pressure, also known as intracranial pressure (ICP), rises and
the pressure differential across the valve becomes larger than a prescribed
threshold, the valve opens and drains CSF from the ventricles, most often
into the abdominal cavity or the right atrium [2].

In pediatric patients, the shunt system has a low lifespan, particularly due to
obstruction occurring at the ventricular catheter by brain tissue [3]. A recent pro-
spective study reported that 60% of pediatric shunts fail within 2 years, and the
obstruction of the ventricular catheter is the most frequent cause, accounting for
27% of such failures [4]. Obstruction causes acute symptoms to patients, such
as headaches, nausea, vomiting, irritability, cranial nerve palsies, blindness and
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Figure 1. (a) Illustration of shunt system. (b) Example of three-dimensional model of ventricular catheter, reconstructed from measurement of a Codman EDS 3 Clear
Ventricular CSF Catheter [16].
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Figure 2. Wall shear stress, τi, formed at the inner surfaces of holes and
lumina due to CSF flow. The wall shear stress is assumed to be the fluid
shear stress imposed on the astrocytes (shown in green) coating the walls.
Holes that face each other have the same wall shear stress due to geometric
symmetry. The subscript denotes the index of a segment that is counted from
the catheter tip. The superscripts H and L represent hole and lumen,
respectively. Wall shear stress defined here is the spatially averaged value.
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even death. Thus, shunt obstructions require urgent shunt revi-
sion surgery, which carries the risk of infection and damage to
brain tissue [5–8]. Although there is a variety of ventricular
catheter designs commercially available, none have been
shown in clinical trials to be superior in preventing obstruction
[8].

Recent studies based on immunostaining of explanted ven-
tricular catheters found that glial tissue ingrowth, mainly by
astrocytes andmicroglia, is themost frequent culprit of obstruc-
tions [9,10]. Astrocytes and microglia are involved in the
immune response of the central nervous system, forming
dense glial tissue around foreign bodies such as neural electro-
des [11] and ventricular catheters [9,10]. It has been reported
that microglia first migrate to the catheter after shunt insertion
and astrocytes gradually become the dominant cell type
forming fibrous tissue in the catheter [9,10]. Given that astro-
cyte-dominant tissue typically becomes prevalent on the
catheter surface in the late stage of cellular response to a catheter
(greater than twomonths) [10], improving the shunt lifespan by
years necessitates hindering astrocytic tissue formation.

Astrocytes on the inner walls of an implanted ventricular
catheter encounter CSF flow (figure 2). This CSF flow touching
the innerwalls induces a shear stress to thewalls (i.e. wall shear
stress). As the size of astrocytes (approx. 10 μm) is much smal-
ler than the characteristic length scale of a ventricular catheter
hole (approx. 500 μm),we can assume that the fluid shear stress
imposed by the CSF on the astrocytes is given by thewall shear
stress. Since astrocytes are exposed to the shear stress imposed
by the CSF flow and given the significant finding of astrocyte
aggregation in shunt catheters, this study focuses on under-
standing astrocyte behaviour in response to fluid shear stress,
which is one possible fluid-dynamic design parameter to
help suppress astrocytic tissue formation.

The behaviour of astrocytes under long-term fluid shear
stress is poorly understood, particularly in the context of ven-
tricular catheter obstruction. Cornelison et al. [12] reported
that when cocultured astrocytes and microglia are exposed
to in vitro fluid shear stress for 1 h, they exhibit increased
S1P3 expression which is upregulated in pro-inflammatory
conditions [13]. Given that astrocytes in the inflammatory
state can proliferate [14], the implication from this study is
that fluid shear stress may enhance astrocyte proliferation.
However, experimental results from Harris et al. [15] suggest
that astrocytes are vulnerable to fluid shear stress particularly
on longer timescales (approx. 10 h). The authors performed
bioreactor studies in which astrocytes were allowed to
migrate from an artificial brain parenchyma tissue mimic
surrounding a ventricular catheter. They found that a flow
culture of 18 h perfusion resulted in a lower number of astro-
cytes on ventricular catheters when compared with a static
culture. We hypothesize that the lower number of astrocytes
in the flow culture is either due to forced cell detachment by
the shear stress or hindered cell proliferation.

To explore this hypothesis and to understand the behaviour
of astrocytes under long-term fluid shear stress, we performed
in vitromicrofluidic experiments that imposed fluid shear stress
on astrocytes for 48 h. We find that the long-term fluid shear
decreases astrocyte confluency, which is the area percentage
covered by cells and is an estimate of cellular growth rate.
Additionally, we find a loss of the stellate cellular morphology,
typical of healthy astrocytes (§2.2). Instead, the cells appear to
form aggregates. Moreover, we find that astrocytes exposed to
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Figure 3. (a) Transparent microfluidic channel used in this study (left) [18] and illustration of channel cross-section (right), with a bottom plate that is gas-per-
meable so that pH remains controlled with sufficient gas exchange. The bottom surface is chemically treated for adherence of cells. (b) Schematic of microfluidic
experiment set-up embedded in controlled CO2 environmental chamber.
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long-term fluid shear are detached more easily upon sudden
transition to high fluid shear stress (§2.3). In light of the
findings that astrocytes are vulnerable to long-term fluid
shear stress, we show that the typical geometry of current
ventricular catheters may promote astrocyte obstruction due
to the inherent presence of regions with comparatively low
wall shear stress. Using computational fluid dynamic (CFD)
simulations of the flow in a typical ventricular catheter, and
using a Poiseuille network model (PNM) proposed in this
study,we conducted dimensional analyses of a typical ventricu-
lar catheter and derived a general design principle to optimize
the wall shear stress distribution (§4). We also identify and
discuss another weak point of typical ventricular catheters,
which is the formation of a stagnation zone with low wall
shear stress. Finally, we propose a novel ventricular catheter
geometric design principle that both optimizes the wall shear
stress distribution and eliminates the stagnation zone (§4.5).
2. Astrocytes vulnerable to long-term fluid shear
stress

2.1. Microfluidic experiment set-up
We cultured a mouse astrocyte cell line (C8D1A, ATCC) in a
commercial transparent microfluidic channel (μ-Slide I Luer,
ibidi GmbH) to investigate the response of astrocytes under
fluid shear stress (figure 3). Two cases were studied with the
channel: (1) a static culture with zero fluid shear stress and (2)
a flow culture with fluid shear stress of 3 mPa. The culture
medium was Dulbecco’s Modified Eagle’s Medium (D6429,
Sigma), supplemented with 10% fetal bovine serum (FBS001,
Neuromics), 1% penicillin–streptomycin (#15140122, Gibco)
and 2.5 Uml−1 nystatin (N6261, Sigma). Using a high-precision
rotational rheometer (HR-1, TA Instruments), the viscosity of
the mediumwasmeasured to be 1mPa s at 37°C. Both cultures
were maintained at 37°C in a humidified atmosphere of 10%
CO2. Astrocytes were first cultured in flasks until their con-
fluency reached 80–90% and then seeded into the channel
with a seeding density of 2.0 × 104 cells cm−2. Seeded astrocytes
werepre-cultured for 24 h in the channel to ensure cell adhesion.
In this study,T = 0 h isdefinedas the time immediatelyafterpre-
culture. Passage numbers 8–11 upon delivery fromATCCwere
used in all experiments, where the passage number refers to the
number of times a cell culture was subcultured.

For the static culture, the medium was changed every 24 h
to ensure sufficient nutrient supply. For mammalian cell cul-
tures in flasks, it is usually recommended to use a medium
supply rate of 0.07–1ml cm−2 d−1 [17]. In our case, the
medium supply rate was 0.09 ml cm−2 d−1, within the rec-
ommended range. We also confirmed that a medium supply
rate of 0.18ml cm−2 d−1 did not result in a statistical difference
in confluency evolution. For the flow culture, as illustrated in
figure 3b, the equilibrated medium with pH 7.4 was injected
into the microfludic channel by a syringe pump with constant
flow rate of 6 μl min−1 to achieve 3mPa of uniform wall shear
stress across the channel’s bottom surface. This wall shear
stress was less than one-tenth of the wall shear stress that
induced instant forced detachment of the cells. We monitored
the pH of both cultures using pH strips and observed that a
pH of 7.1–7.4 was maintained in both cultures. The cultures
were maintained until T = 48 h. Phase-contrast microscopy
(Ti-U, Nikon) was performed every 24 h to monitor changes
in cell confluency and morphology.
2.2. Decrease of confluency and change in cell
morphology upon long-term fluid shear stress

Astrocytes in static culture exhibited a gradual increase of con-
fluency andmaintained their star-shaped/stellate morphology
that is the typical shape of physiological astrocytes; this stellate
shape is commonly observed in both nonreactive and reactive
astrocytes [19]. By contrast, astrocytes under prolonged fluid
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Figure 4. Phase-contrast imaging of static (a) and flow (b) cultures, showing clear difference in confluency of cells over time (up to 48 h here). Scale bar is 200 μm.
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Figure 5. Quantification of change of cell confluency over time in static
(0 mPa shear stress) and flow (3 mPa shear stress) cultures, such as those
shown in figure 4. Error bars reflect the standard deviation over n number
of independent experiments performed.
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shear stress showedadecrease in confluencywithin the first 24 h,
a loss of their characteristic star-like morphology, and the for-
mation of cell aggregates (figures 4 and 5). Confluency was
estimated across a region where fluid shear stress was homo-
geneous (electronic supplementary material, S3) and measured
using a segmentation method proposed by Jaccard et al. [20]
(electronic supplementarymaterial, S4). The loss of characteristic
projections under applied fluid shear stressmaysuggest cytotox-
icity of long-term fluid shear stress to astrocytes as such loss is
frequently observed in astrocytes with pathological conditions
[21–24]. Also, cellular aggregates found on explanted ventricular
catheters showed an extensivemesh of astrocyteswith character-
istic cellular projections emanating from the cell bodies [10],
characteristic of healthy astrocytes, which we found in our
static cell culture but not in the flow culture.

2.3. Long-term fluid shear stress facilitates forced
detachment by high fluid shear stress

We further observed that astrocytes exposed to long-term
moderate fluid shear stress were more easily detached from
the surface upon sudden imposition of high fluid shear
stress. At T = 72 h, both static and flow cultures were subjected
to a sudden high fluid shear stress of 30mPa. Here, the ramp-
ing time from 0 to 100% of flow ratewas about 17 ± 3 s (SDwith
n = 3), indeed a much shorter ramping time than the 163 ± 24 s
(SD with n = 3) used for imposition of continuous flow rate
conditions in other experiments. The channels were exposed
to the high fluid shear stress for 1min and were imaged via
phase-contrast microscopy to subsequently digitally quantify
the resultant change in confluency. We performed this
procedure three times for each channel, with a 3-min total
exposure time to high shear stress. This high fluid shear
stress corresponds to a level that can be found in typical ventri-
cular catheters with flow rates of Q = 1mlmin−1, a reported
upper bound on shunt flow rate [25,26]. We observed that
after 3min, astrocytes cultured under continuous moderate
shear stress showed a 44+ 14%decrease in relative confluency
(defined as confluency normalized by the initial confluency)
due to both detachment and cell retraction. In contrast, static
cultured astrocytes exhibited a 22+ 6% decrease, but solely
due to cell retraction (figures 6 and 7). The videos provided
in electronic supplementary material, movie S1, show that
the detachment upon high shear stress only occurs to astrocytes
cultured under continuousmoderate shear stress, in contrast to
astrocytes statically cultured, which appear more robustly
attached and instead only show a change in morphology in
response to the suddenly imposed high shear stress condition.

Although little information is available on the temporal
change of shunt flow rates,we can expect that the flow rate fluc-
tuates with changes in ICP, which can be caused by posture
change or respiratory variation in ICP that cause intermittent
opening of the shunt valve [25,27]. According to a bench test
with actual catheters, with mathematical models of ICP, the
flow rate can attain maximum values close to 1mlmin−1 [25].
We performed a CFD simulation with 1 mlmin−1 of the flow
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Figure 6. Phase contrast imaging of the response of astrocytes to short high fluid shear stress of 30 mPa at T = 72 h. Here (above each column), t is the duration for
which the high fluid shear stress is imposed. Astrocytes cultured under continuous long-term moderate fluid shear stress (b) exhibit more detachment, while those
from static culture (a) only show change in cell morphology, with noticeable regions of cell retraction. Scale bar is 200 μm. The videos are provided in electronic
supplementary material, movie S1.
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Figure 7. (a) Changes of confluency of astrocytes from the static and flow cultures when subjected to 30 mPa fluid shear stress computed from images such as
those shown in figure 6. (b) Changes of relative confluency corresponding to (a), normalized by confluency value at t = 0 min. The difference in relative confluency
between the static and flow cultures increases over time. At t = 3 min, the difference between the groups is 22%, a statistically significant difference (p < 0.05 of a
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rate in the catheter given in figure 1b and observed that thewall
shear stress at the most downstream lumen was larger than 50
mPa. This implies that astrocytes in an actual ventricular cath-
eter can be exposed to fluid shear stress that induces forced
detachment—as shown in our experiment—and which can be
enhanced by long-term fluid shear stress whose fluctuating
timescale and amplitude in patients were observed to be of
the order of O(1 h) and O(0.1mlmin−1), respectively [28].

Ultimately, the experimental results shown in this section
provide a key insight for a new approach to the design of ven-
tricular catheters: How can wall shear stress distribution on the
inner wall surfaces be optimized to hinder obstructive astrocytic
glial tissue formation?
3. Formation of low wall shear stress zone in
typical ventricular catheter

3.1. Computational fluid dynamics simulation set-up
In the light of our discovery of the vulnerability of astrocytes to
long-term fluid shear stress, we performed CFD simulations
(Fluent 2019 R1) to investigate thewall shear stress distribution
in typical ventricular catheters. In this study, we considered a
casewhere the cerebral ventricles are so enlarged that frictional
loss from the ventricular wall is negligible. We ensured this
condition in the simulation by enclosing the ventricular cath-
eter into a box domain whose walls are sufficiently distant
from the catheter (figure 8), which also meets the distance con-
dition suggested by Weisenberg et al. [29]. We imposed a
constant normal velocity condition on the surface of the
domain that faces the tip of the catheter and zero-pressure
condition on the outlet of the catheter. A no-slip boundary
condition is applied to the other walls.

Flows in ventricular catheter have low Reynolds numbers
(Re); thus, a laminar model that solves the incompressible
Navier–Stokes equations was used in all simulations. Re is
defined as

Re ¼ rUD
m

, (3:1)

where U is the mean velocity at the outlet of the catheter, D is
the lumen diameter, ρ and μ are the density and viscosity of
CSF, respectively. The density of CSF is ≈1000 kgm−3 [30].
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Figure 8. Example of three-dimensional models used in our CFD simulations.
The size of the domain is set to be sufficiently large, to ensure negligible wall
effects, including frictional loss. The inlet and outlet have constant-velocity
and zero-pressure conditions, respectively. No-slip boundary conditions are
imposed on the other walls.
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We measured the viscosity of CSF from human subjects, find-
ing that its viscosity ranges from 0.8 to 1.8mPa s with weak
shear thinning (see electronic supplementary material, S6 for
details). This result differs from a prior report that CSF is New-
tonian [31]. The prior study had insufficient measurements of
viscosity with shear rates below 360 s−1, across which shear
thinning starts to become noticeable according to our data. D
is within 1.0–1.6mm [2], and an upper bound of the shunt
flow rate was reported to be ≃1mlmin−1 [28]. Given these
values, the physiological Re is estimated to be less than 25,
mostly a laminar flow. Based on the values from the literature
and our measurement, ρ and μwere set to be 1000 kgm−3 and
0.8mPa s, respectively, in all our simulations.

3.2. Quasi-exponential decay of wall shear stress across
typical ventricular catheters

Figure 9 shows the design of a typical ventricular catheter. Here,
a typical ventricular catheter represents a catheter whose holes
have the same diameter, depth, spacing interval, and number
of holes per segment. From CFD simulations, we found that
the typical ventricular catheter features a quasi-exponential
decay of MWSS over decreasing index of holes or lumina
(figure 10). This exponential decay leaves many holes with low
WSS, which can be favourable to the adhesion and growth of
astrocytes. In the simulation, we set the flow rate Q to 0.03ml
min−1 which is 10% of the typical CSF production rate in the cer-
ebral ventricular system [32]. This flow rate represents a
physiological lower bound of the shunt flow rate, whichwe con-
sider to be a worst-case scenario in terms low WSS values
insufficient to alter astrocyte dynamics and adhesion.

We observed from the astrocyte experiments (§2) that fluid
shear stress of approximately O(1mPa) prevents astrocytes
from increasing confluency and frommaintaining their healthy
morphology. When applying 1mPa as a cut-off WSS to the
simulation in figure 10, we conclude that all holes and
lumina except H8 and L8 have WSS that are lower than the
ideal threshold condition that could prevent obstruction. This
implies that a typical ventricular catheter may not have
sufficient WSS across all inner surfaces if it is designed
without particular consideration for the optimization of WSS
distribution. We thus turn towards a more systematic
approach to optimize the ventricular catheter design to
ensure WSS values hindering astrocyte attachment and
potential for obstruction.
4. Optimization of typical ventricular catheter
using dimensional analysis

4.1. Poiseuille flow in ventricular catheters
Building on the key combined insights that (1) astrocytes are
vulnerable to fluid shear stress and (2) they can play a major
role in catheter obstruction, maximizing the WSS inside a ven-
tricular catheter is a valuable strategy to reduce obstruction.
This requires understanding the characteristics of the flow
within typical catheters. To develop this understanding, we
performed direct flow visualization on an actual catheter
(Codman EDS 3 Clear Ventricular Catheter, Codman &
Shurtleff), using direct fluorescent particle tracking performed
by high-speed fluorescent microscopy (Ti-U, Nikon). Given
the curvature of catheter tubing, accurate measurements
required optical correction of the curvature-induced image dis-
tortions. We did this with refractive index matching between
the chosen working liquid and the material of the catheter.
The details of the experimental methodology, including the
calculation enabling us to determine the optimal choice of
refractive index matching are in Lee [33] and Saksena et al. [34].

From the visualization experiments, we first found that the
flow entering a hole does not have a uniform velocity profile
(figure 11b). The entrance length l at which a laminar flow
becomes fully developed classically follows l/d = 0.06Re,
where d is the hole diameter [35]. Assuming that the flow
enters a catheter hole with a uniform velocity profile, the
entrance length l would be ∼O(0.1d ) for a hole with local
Reynolds number Re∼O(1). In fact, our measurements
(e.g. electronic supplementary material, movie S2) show that
the flow profile is pre-developed from the outside of the hole,
inducing an entrance length that is shorter than that expected
from classical estimates. Indeed, Sparrow&Anderson [36] per-
formed numerical simulations of a two-dimensional flow that
is drawn from a large reservoir to a channel, finding that the
entrance length for Re = 25—which is the highest Re in a cath-
eter system—to be around 35% of the channel height. Note
that the classical entrance length estimation gives 150% of the
height [35], four times larger than the value for a flow from
the large reservoir to a small channel. This implies that the
flow at the catheter hole would become a fully developed
Poiseuille flow shortly upon hole entrance. Given the lack of
prior quantitative flowmeasurements in such catheter systems
[37], we had to directly measure the actual velocity profiles at
the catheter holes to confirm the nature of the flow profiles.

Figure 12a,b shows an example of direct experimental
measurements of velocity profile at a catheter hole. First, this
measured—reconstructed from particle tracking—profile
matches well the associated flow rate-matched theoretical
fully developed Poiseulle flow profile, with a 5% error, showing
excellent agreement with the Poiseuille fully developed flow
hypothesis (figure 12c). In this comparison, the flow rate was
computed from integration of the experimentally measured
flow profile. Second, we also compare the CFD predicted flow
profile against the measured profile—again, reconstructed
from particle tracking—and find 12% error, showing that the
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CFD prediction is also reasonable (figure 12d). Here, the
error is defined as ||V−Vexp||2/||Vexp||2, where V is a
vector, the predicted velocity at all grid nodes, and Vexp is the
corresponding vector from the experimentally measured
velocity profile. The step size of the grid is 1% of the diameter
of the cross-section.
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Additionally, we also performed CFD simulations for a
flow with higher inertia (Re = 25) confirming that the flows
in holes and the lumen remain well approximated by a
Poiseuille profile (electronic supplementary material, S1).

4.2. Poiseuille network model and identification of
dimensionless numbers

Having validated that the flow is indeed of Poiseuille type in
most of the relevant regions of a typical catheter (figure 12),
we discuss here a PNM we developed to describe a typical
ventricular catheter as a multi-pipe system where Poiseuille
flow applies at every section. From the model, we identified
dimensionless numbers that determine the wall shear stress
distribution inside a catheter. Using CFD simulations, we
validated this approach, showing that the matched dimen-
sionless numbers across different structural models lead
to the same wall shear stress distribution as that of the
PNM developed and discussed in detail in electronic
supplementary material, S2.

The PNM consists of the following. Consider a typical
ventricular catheter with lumen diameter D, hole diameter
d and depth l, hole spacing interval L, wall thickness η, m
number of holes per segment and n number of segments
(figure 9). Here, we assume that the hole depth, l, is approxi-
mately the wall thickness η. Using the PNM, we predict the
spatially averaged MWSS at the inner surface of a hole or
lumen as

Xk
i¼1

t̂Hi ¼ l=L
m(d=D)4

(t̂Hkþ1 � t̂Hk ) for 1 � k � n� 1, (4:1)

Xn
i¼1

t̂Hi ¼ 1

m(d=D)3
(4:2)

and t̂Lk ¼ m
d
D

� �3Xk
i¼1

t̂Hi for 1 � k � n, (4:3)
where t̂Hk and t̂Lk are the MWSS values at the kth hole and
lumen, respectively, both non-dimensionalized by the most
downstream wall shear stress τd = 32μQ/πD3. Here, the sub-
script index is counted from the tip of the catheter. Equations
(4.1) and (4.2) complete a system of linear equations that esti-
mates the MWSS levels across holes, which in turn allows
equation (4.3) to calculate the MWSS levels across lumina.
Solving equation (4.1) allows us to express every t̂Hk as a
function of t̂H1 :

t̂Hk ¼ ak þ a1�k

aþ 1

� �
t̂H1 ¼ Gk t̂

H
1 , (4:4)

where

a ¼ 1þ cþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4c

p

2
and c ¼ m(d=D)4

l=L
: (4:5)

Detailed steps for solving the recursive relation (4.1) are given
in electronic supplementary material, S2.

From (4.1) to (4.3), four dimensionless numbers associ-
ated with a typical ventricular catheter can be identified

m, n, l̂ ¼ l=L and d̂ ¼ d=D: (4:6)

Using CFD simulations, we confirmed that catheter flows that
have the same set of the dimensionless numbers share the same
non-dimensionalized MWSS distribution (figure 13). More-
over, the non-dimensional MWSS distribution calculated
from the PNM showed an excellent agreement with those
obtained from the CFD simulations, themselves confirmed
by direct flow reconstruction frommicroscopy particle tracking
(figure 12). We studied three different scenarios to show that
the PNM offers a universal principle for the description of
the flow inside a typical ventricular catheter. While maintain-
ing m = 2, n = 8, l̂ ¼ 0:6 and d̂ ¼ 0:77, the three different
scenarios were designed to have different dimensional par-
ameters and Reynolds numbers as given in figure 14 and



Table 1. Geometric parameters and Reynolds numbers associated with three different scenarios. In all scenarios, l/L and d/D were maintained to be 0.6 and
0.77, respectively. All parameters are within a design range in accordance with the range of catheters that have been clinically used [2,26], and the Reynolds
number is also within the physiological limit, which is estimated to be 25 (§3.1).

l (mm) L (mm) d (mm) D (mm) Q (ml min−1) μ (mPa s) Re

scenario 1 0.60 1.0 1.00 1.3 0.03 0.8 1

scenario 2 0.72 1.2 1.08 1.4 0.30 0.8 6

scenario 3 0.84 1.4 1.15 1.5 1.00 0.8 18

H1 H2 H3 H4 H5 H6 H7 H8 L1 L2 L3 L4 L5 L6 L7 L8

section

10–3

10–2

10–1

1 scenario 1
scenario 2
scenario 3

PNM

no
n-

di
m

en
si

on
al

 M
W

SS

Figure 13. Non-dimensional MWSS distributions in three different scenarios, obtained from CFD simulations. All scenarios share the same m = 2, n = 8, l̂ ¼ 0:6
and d̂ ¼ 0:77.

scenario 1

scenario 2

scenario 3

Figure 14. Three different ventricular catheters that share the same dimensionless numbers of m = 2, n = 8, l̂ ¼ 0:6 and d̂ ¼ 0:77. The dimensional geometric
parameters of the catheters are given in table 1. Scale bar is 1 mm.
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table 1. It is important to note that matching these dimension-
less numbers is different from geometric similarity that
requires identical shape across structural models. Provided
the result above, we can regard the identified dimensionless
numbers as the key design parameters.
4.3. Manipulation of dimensionless numbers to
enhance wall shear stress

Here, using CFD and dimensional analysis, we studied how
the MWSS levels at holes and lumina can be optimized
by adjusting the dimensionless numbers. As we are now
interested in the dimensional MWSS values, we re-express
(4.1)–(4.3) in their dimensional form:

Xk
i¼1

tHi ¼ l̂

md̂
4 (t

H
kþ1 � tHk ) for 1 � k � n� 1, (4:7)

Xn
i¼1

tHi ¼ td

md̂
3 (4:8)

and tLk ¼ md̂
3Xk

i¼1

tHi for 1 � k � n, (4:9)



H1 H2 H3 H4 H5 H6 H7 H8 L1 L2 L3 L4 L5 L6 L7 L8

section

10–4

10–3

10–2

10–1

1

10

M
W

SS
 (

m
Pa

)

(2, 8, 0.30, 0.77, 1.85)
(2, 8, 0.60, 0.77, 1.85)
(2, 8, 0.60, 0.46, 1.85)
(2, 8, 0.60, 0.46, 3.21)
(2, 3, 0.60, 0.46, 3.21)
(1, 3, 0.60, 0.46, 3.21)

(m, n, l, d, τd)ˆ ˆ ˆ

Figure 15. Improving wall shear stress distribution by manipulating a single dimensionless number at a time. All results were obtained from CFD simulations. The
total flow rate and CSF viscosity were 0.03 ml min−1 and 0.8 mPa s, respectively.
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where tHk and tLk indicate the MWSS at the kth hole and
lumen, respectively. These equations would have the same
solution when m, n, l̂, d̂ and τd are kept fixed. For the purpose
of dimensional analysis, we introduce another dimensionless
number associated with τd:

t̂d ¼ td=tc ¼ 32mQ
pD3tc

, (4:10)

where τc is the cut-off minimal value of WSS that can inhibit
astrocyte growth and adhesion. The value of τc is set to 1mPa
in this study.

Using CFD, we show that the MWSS monotonically
increases at every section when m, n or d̂ decreases or t̂d
increases (figure 15). Unlike these straightforward trends,
increasing l̂ enhanced the value of MWSS of every lumen con-
sidered here, but not of every hole. Starting from a geometric
model that is not optimized, we optimized the MWSS distri-
bution by controlling a single dimensionless number at a
time. During the optimization, we also keep the geometric par-
ameters in a design range that is relevant and consistent with
current commercial catheters [2,26]. The geometric parameters
of the starting geometry are

(m, n, l, L, d, D) ¼ (2, 8, 0:6, 2:0, 1:0, 1:3), (4:11)

where the unit of l, L, d and D is millimetre. The total flow rate
Q was set to 0.03mlmin−1 to work with a worst-case scenario
with lowest overall wall shear stress, and the viscosity of CSF
used was 0.8mPa s. We measured the viscosity of CSF from
human subjects (n = 37) as described in detail in electronic sup-
plementary material, S6. We found that the viscosity of CSF
typically lies within 0.8–1.8mPa s at 37°C under 85–1000 s−1

of shear rates, where surface tension-induced error [38] is neg-
ligible (electronic supplementary material, S6.2). Furthermore,
the CSF samples exhibited weak shear thinning with 0.83 ±
0.06 (SD) of the flow behaviour index [39] that was estimated
from the data obtained over 85–300 s−1, where slight shear thin-
ning appeared. Here, to consider the worst-case scenario of
catheter flow, we use the lowest value of viscosity (i.e. 0.8
mPa s) measured in our human-subject data (electronic sup-
plementary material, S6.1). These parameters then form the
set of dimensionless numbers as follows:

(m, n, l̂, d̂, t̂d) ¼ (2, 8, 0:3, 0:77, 1:85): (4:12)

As can be seen in figure 15, we first tested the effect of l̂ by
increasing its value from 0.3 to 0.6, from the circle to square
symbols, while keeping the other dimensionless numbers
fixed. Increasing l̂ helped optimize the MWSS distribution
inside the catheter. Indeed, increasing l̂ increased the mini-
mum MWSS of both holes and lumina, i.e. the MWSS
increased at H1 and L1. The PNM provides the rationale
for such changes. Substituting (4.4) into (4.8) solves for the
MWSS at the first hole which is the minimum MWSS across
all holes:

tH1 ¼ 1

md̂
3Pn

i¼1 Gi

td: (4:13)

We prove in electronic supplementary material, S5.1, that
@
Pn

i¼1 Gi=@ l̂ is always negative, which explains why the
increase of l̂ leads to the increase of tH1 .

Now, from (4.4) to (4.13), we obtain

tHk ¼ Gk

md̂
3Pn

i¼1 Gi

td, (4:14)

which explains the monotonic increase of the MWSS with
hole index, i.e. as we move away from the tip of the catheter
toward the valve.

When it comes to the lumen regions (L1–L8), the
increased l̂ enhanced the MWSS levels in all lumina except
for L8 whose MWSS remains unchanged. Plugging (4.14)
into equation (4.9) gives

tLk ¼
Pk

i¼1 GiPn
i¼1 Gi

td ¼ Fktd for 1 � k � n, (4:15)

which gives tLn ¼ td, confirming that MWSS at the last lumen
does not depend on l̂. We also prove in electronic supplemen-
tary material, S5.2, that @Fk=@ l̂ is positive except for k = n,
explaining the observed increase of the MWSS at the
lumina L1–L7 with the increase of l̂.



stagnation zone

wall shear stress (mPa)

H1 H2 H3

L1 L2 L3

2.6 × 10
–4

1.5 × 10
–3

5.0 × 10
–2

8.6 × 10
–3

2.9 × 10
–1

1.7 9.7

Figure 16. Formation of stagnation zone, revealed by CFD calculations to be near the tip of a typical ventricular catheter, here shown for total system flow rate of
Q = 0.03 ml min−1 and viscosity μ = 0.8 mPa s. The catheter and wall shear stress contour shown here corresponds to the left-pointing triangle markers in figure
15. The stagnation zone has very low wall shear stress, three orders of magnitude lower than 1 mPa, which is the cut-off wall shear stress. Scale bar is 1 mm.
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As a next step, we changed d̂ from 0.77 to 0.46 (from square
to triangle symbols in figure 15), keeping the other dimension-
less numbers fixed. Decreasing d̂ significantly enhanced the
MWSS levels at all sections. This implies @tHk =@d̂ , 0 and
@tLk =@d̂ , 0, which are proved in electronic supplementary
material, S5.3 and 5.5. Changing d̂ has a greater effect on the
MWSS distribution, compared with changing other dimension-
less numbers. This can be attributed to the high-order
nonlinear effect that can be identified in the PNM system
(equations (4.7)–(4.9)).

Increasing t̂d raised the MWSS of all sections (from
triangle to right-pointing triangle symbols). As τd is the
non-dimensionalizing factor in the PNM (equations
(4.1)–(4.3)), MWSS levels at all sections are simply proportional
to t̂d. Since designs with different n do not allow the one-to-
one comparison across sections, we now compare the mini-
mum MWSS of holes or lumina. tH1 and tL1 are the minimum
MWSS across holes and lumina, respectively, according to
(4.4) and (4.14). As can be seen in figure 15, decreasing n
increases both tH1 and tL1 (from right-point to left-point
triangles), since

Pn1
i¼1 Gi .

Pn2
i¼1 Gi when n1 > n2 in (4.13).

tH1 jn¼n1 , tH1 jn¼n2 : (4:16)

As tL1 , the minimum MWSS across lumina, is equal to md̂
3
tH1

from (4.9), which further extends (4.16) to

tL1 jn¼n1 , tL1 jn¼n2 when n1 . n2: (4:17)

Decreasing m enhanced the MWSS levels across all holes and
lumina except the final lumen L3 whose MWSS remains
fixed. This last result can also be shown using the PNM, deriv-
ing that @tHk =@m , 0 and @tLk =@m � 0 (electronic
supplementary material, S5.4 and 5.5).

In sum, in this section, using the CFD and our proposed
PNM, we elucidated how dimensionless numbers controlling
catheter design should be manipulated to optimize the WSS
distribution inside a catheter. The final MWSS distribution,
shown with diamond markers in figure 15, has MWSS levels
larger than 1mPa in all sections, meeting optimal threshold
condition of minimal adhesion and ease of removal of
astrocytes, thus expected minimal flow obstruction potential.
4.4. Formation of stagnation zone at the catheter’s tip
Although we showed that the MWSS distribution can be opti-
mized by manipulating the dimensionless numbers, there is
still a region which the approach cannot optimize. Indeed,
the analysis of §4.3 does not predict the WSS distribution
at the surfaces of the region that is shown boxed in figure
16. This region features a stagnation zone, where CSF stag-
nates and recirculates, inducing very low shear stress on the
wall. Based on our results above (§2), this region would be
favourable for astrocyte accumulation, allowing for robust
adhesion in the region and proliferation that could propagate
downstream over time. To avoid this particular stagnation
region, in the next section, we propose a new design principle
that suppresses such stagnation zone inherent to current
ventricular catheter designs.
4.5. A ventricular catheter with open tip-end and its
optimization

We suggest a new geometry whose tip has an aperture with a
depth of Le (figure 17a). The newly formed aperture is now
called L0. Using a similar argument given in the derivation
of the PNM for typical ventricular catheters, we can introduce
another PNM to take the new aperture into account:

tL0 ¼ l̂e
d̂
tH1 , (4:18)

Xk
i¼1

tHi ¼ l̂

md̂
4 tHkþ1 � tHk � d̂

l̂
tL0

 !

for 1 � k � n� 1,

(4:19)

Xn
i¼1

tHi ¼ td � tL0
md̂

3 (4:20)

and tLk ¼ tL0 þmd̂
3Xk

i¼1

tHi for 1 � k � n, (4:21)

where l̂e ¼ l=Le and the other variables are defined as in the
previous model (equations (4.7)–(4.9)). The above system of
linear equations gives the MWSS levels at all sections includ-
ing the newly added aperture L0. Using this model, we
solved a numerical optimization problem that maximizes
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Figure 17. (a) Geometric parameters involved in designing a novel catheter
with open tip end discussed in §4.4. (b) WSS heat-map of the catheter with
such open end optimized for all MWSS values to be larger than 1 mPa, i.e.
meeting the threshold condition of low proliferation and adhesion of astro-
cytes. Scale bar is 1 mm.

H1

M
W

SS
 (

m
Pa

)

0

1

2

3

4

5

6

PNM
CFD

H2 H3 L1 L2 L3L0

section

Figure 18. MWSS value distribution formed in an optimized catheter with
open tip end (§4.4), all maintained above the 1 mPa threshold above
which low proliferation and adhesion of astrocytes are expected. An error
between the MWSS level from the CFD and PNM at a section is less than
16%, where the error is quantified by |MWSSPNM− MWSSCFD|/MWSSCFD.
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the minimum MWSS across all sections L0–L3 and H1–H3.
Here, we also assumed that the total flow rate is 0.03ml
min−1 and the viscosity of CSF is 0.8mPa s. In this example
of optimization of an open-ended catheter, without loss of gen-
erality, the parameters m and n were fixed to 2 and 3,
respectively. The input variables of the optimization were the
length of the end open region, Le, hole spacing L, hole diameter
d, hole depth l and lumen diameter D, which is illustrated in
figure 17. Given that the PNM calculates the wall shear stress
distribution more than a hundred times faster than the CFD
simulation, we use the PNM for optimization. Coupling the
modified PNM to an interior-point approach to constrained
minimization (e.g. the fmincon function inMATLAB), we com-
pute the optimal geometry with constrained upper and lower
bounds of the geometric parameters to remain within the
range of values of commercial catheters [2,26]. In addition to
the bound constraints, additional geometric constraints
imposed are: (1) D cannot be smaller than d, which is an
inherent geometric constraint; and (2) L cannot be smaller
than d, which ensures efficacy of the PNM which assumes
fully developed flow in lumina regions.

As can be seen in the computational (CFD) results of
figure 17b, for Q = 0.03mlmin−1, the optimal solution
shows MWSS values larger than 1mPa for every inner sur-
face, with no stagnation zone. The PNM calculation also
shows a good agreement with that from the CFD analysis
(figure 18), confirming again that the PNM can be used
instead of CFD to design optimized ventricular catheters
while ensuring not only fast computation but also accuracy.
5. Discussion
Hydrocephalus involves enlarged cerebral ventricles due to
excess CSF in the cerebral ventricular system. Ventricular
catheters have had great success in alleviating this condition.
However, they have a low lifespan due to obstruction, with
60% failure rate within 2 years. The obstruction is caused
in large part by glial tissue ingrowth, consisting mainly of
astrocytes and microglia. These two cell types populate the
catheter at different timescales, with early migration by micro-
glia and later dominance by astrocytes. Improving the shunt
lifespan by years particularly requires prevention of the astro-
cyte-dominant tissue formation since astrocytes are most
frequently found in catheters explanted for late shunt failures
(greater than two months). We focused this study on elucidat-
ing the long-term fluid shear stress effect on astrocytes in the
context of the obstruction of ventricular catheters and used
our findings to propose a systematic and efficient method of
optimization of ventricular catheter designs that can alleviate
the adhesion and proliferation of these cells, thus potentially
addressing one family of obstructions. To do so, we conducted
in vitro cultures of astrocytes in microfluidic channels,
mimicking glial tissue formation in ventricular catheters. We
discovered that long-term fluid shear stress decreases con-
fluency and increases loss of their star-like morphology.
Furthermore, the long-term fluid shear stress facilitated the
forced detachment by suddenly imposed high fluid shear
stress that could be encountered during regular changes of pos-
ition of patients, coughs, that result in shunt-valve opening.
Our results offer fundamental insights into an approach for
geometric optimization of the design of ventricular catheter
intended to minimize astrocyte-induced obstructions.

The underlying mechanism governing the observed be-
haviour of astrocytes upon long-term shear fluid stress
remains to be confirmed. The literature suggests that it may
be governed by mechano-sensitive calcium channels on the
cell membrane. Indeed, Charles et al. [40] found that mechan-
ical poking to rat glial cells results in increased measured
calcium levels in the poked glial cell and also generates
calcium waves from the poked cell to neighbouring cells.
More recently, Maneshi et al. [41] identified the type of
calcium channels that causes calcium entry into rat astrocytes
upon fluid shear stress shock. Given this mechano-sensitive
calcium channel of astrocytes, it is also known that calcium
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overload in glial cells can trigger their death [42–44]. These
prior results coupled with our results suggest that long-term
fluid shear stress may induce prolonged opening of astrocyte
calcium channels, leading to a disturbed homeostasis of their
cytosolic calcium level, ultimately causing decrease in their
confluency and loss of their typical star-like morphology.
Note that our results on cytotoxicity of fluid shear stress to
astrocytes were derived using culture of a single cell type.

From detailed analyses of explanted catheters, it is known
that microglia first migrate to the catheter and astrocytes form
glial tissue thereafter [9,10]. Given that microglia have been
found to support the function of astrocytes in multiple
immunological contexts [45,46], investigating the response
of a co-culture system of astrocytes and microglia under
shear flow would be a valuable next objective to more pre-
cisely understand the obstruction by astrocytic glial tissue.
Also, studying the activity of glial cells under long-term
shear flow, such as identifying associated gene expression
profiles, would enable us to further characterize the biologi-
cal state of glial cells in response to persistent shear flow.
The results presented in this study are a baseline for future
studies considering additional complexity and factors from
co-culturing with microglia to preconditioning astrocytes to
a biochemical state that relates to a specific pathological
condition.

Lin et al. [37] first reported that typical ventricular catheter
designs exceedingly concentrate flow at the most downstream
set of holes. The authors hypothesized that the elevated flow
through these holes can elevate the probability of blockages
at these holes and that their obstructionmayextend to the lumi-
nal part of the catheter and thereby disable the entire catheter at
once. In support of their hypothesis, the authors state that
obstructing tissue is found most frequently around the most
downstream set of holes in explanted catheters, yet clear evi-
dence for this claim is currently lacking. However, based on
this hypothesis, multiple studies have attempted to homogen-
ize the flow rate distribution across catheter holes by changing
the catheter hole geometry [29,37,47] in an effort to decrease the
probability of aspirating bulk tissue and cells at a given hole.
By contrast, based on the response of astrocytes to long-term
shear flow, we set the design objective for ventricular catheters
to maximizing wall shear stress across the inner surfaces of a
catheter. This objective is fundamentally different from the
objective of the prior studies on catheter design optimization
that focused on homogenizing flow rate distribution across
holes. Indeed, we established another goal for designing ven-
tricular catheters, particularly related to the obstruction by
astrocytes: enhancing the wall shear stress inside a ventricular cath-
eter. It is important to note that this goal is not necessarily
attained by homogenizing the flow rate distribution. Accord-
ing to the PNM, tiH is scaled by Qi

H=d
3
i , where Qi

H and di are
the flow rate and diameter of the ith hole, respectively. This
scaling implies that a geometry that has equally distributed
flow rates can fail to achieve the minimal value of wall shear
stress across a hole that hinders astrocyte obstruction, due to
hole diameters that are chosen to be too large. Our PNM for
ventricular catheters can also be used for the exploration of a
range of viable design principles that seek to
achieve multiple design objectives regarding the catheter
flow. For example, one may be interested in wall shear stress
maximization and also flow rate homogenization across
holes. Such a solution can be obtained, as illustrated in elec-
tronic supplementary material, S7, by coupling the PNM
with a multi-objective genetic algorithm [48]. Moreover, the
lumped-element approach of the PNM enables exploration of
designs whose hole depths, hole spacing, and hole diameters
are not constant, allowing us to explore flow optimization in
a large parameter space [49].

This study tackles how astrocytes attached on the catheter
surface respond to long-term fluid shear stress. It does not
address the mechanism of initial migration of astrocytes to
the catheter. Harris & McAllister [50] conducted bioreactor
experiments that exposed different catheter models to an
astrocyte suspension. The authors sought to address the
effect of hole size on the adhesion of astrocytes from
the liquid suspension. Their study shows that the smaller
the catheter hole (and the higher the computed wall shear
stress), the higher the number of astrocytes that adhere to
the hole surface. Our work here appears to contradict the
results obtained by Harris & McAllister [50]. However, CFD
simulations of their catheter designs, including the effect of
taper of the catheter holes that are evident from fig. 5 in
Harris & McAllister [50], demonstrate that their calculated
wall shear stress for the smaller catheter holes when ignoring
the taper is an overestimate of the average wall shear stress
across holes when taking the taper into account. When
accounting for the taper, the catheters with the smaller
holes have smaller wall shear stress values compared to
those with larger holes. Detailed simulations of the shunt
flow through holes of different size and taper might be
required to understand further how wall shear stress is
affected by various design parameters.

Lastly, we suggest that the introduction of bulk tissue, such
as choroid plexus, to a hole can form low wall shear stress
zones at the hole surface. Our preliminary CFD results given
in electronic supplementary material, S8, show that a partially
blocked hole results in local regions where wall shear stress is
lower than that of the unblocked control case. This result
implies that astrocytes may grow in the regions of low wall
shear stress, filling the spatial gap between the blocking
tissue and the hole surface. This hypothesis aligns with
the observations by Hanak et al. [10] that astrocytes are found
between the catheter surface and bulk tissue.

In sum, using a microfluidic culture system, we showed
that astrocytes are vulnerable to long-term fluid shear
stress. Based on this insight, and having experimentally con-
firmed Poiseulle-type flow in the catheter, we developed a
physics-based PNM to guide optimization of the geometric
parameters to enhance wall shear stress inside typical ventri-
cular catheters in addition to a design principle that
suppresses a potentially nefarious flow stagnation zone
which is commonly formed in current typical ventricular
catheters. The design principles [49] provided in this study
are expected to extend the lifespan of ventricular catheters
and enhance the quality of life of hydrocephalus patients.
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1 Poiseuille flows in ventricular catheters
We first offer detailed velocity profiles at catheter holes discussed in §4.1 to validate the profile and the simulations and theory
that are then subsequently used. Figure S1 show the 2D velocity profiles at the hole at different plane depths (or z-slices). As
can be seen in the figure, both profiles from CFD simulation and Poiseuille theoretical calculation are in excellent agreement
with the experimental data across all slices of visualizations. A detailed description of the experimental method is given in
Figure S2. Using CFD simulations, we also found Poiseuille flows at both holes and lumina, at Re = 25 – the upper limit of the
catheter flow regime – (Fig. S3).

2 Derivation of Poiseuille network model for typical ventricular catheters
Here, a Poiseuille network model (PNM) is proposed to estimate the flow rate and wall shear stress (WSS) distributions along
holes and lumina (Fig. S4). The model formulates a typical ventricular catheter as a multiple-pipe system that has multiple
CSF-diverting holes along the lateral direction. Given §4.1 and §S-1, Poiseuille’s law is assumed across all holes and lumina.

Suppose a ventricular catheter has n number of segments. Figure S4 shows the kth and (k+1)th holes that are connected
by the kth lumen. Every hole of the catheter has a diameter d and depth l. We assume that the holes at a segment are arrayed
symmetrically so that they have the same flow rate Qk. Every lumen has diameter D and length L. Assume o to be a point
source of CSF. Given the total head at point o is ho, the total head at point 3 can be calculated in two ways.

h3 = ho +(ho→1 +h1→4 +h4→3) = ho +(ho→2 +h2→3) (S.1)

The change of the total head along each path is the sum of frictional loss h f and the change of elevation head. Since the change
of elevation head along the two paths are equal to one another, the paths should have the same h f .

h f
o→1 +h f

1→4 +h f
4→3 = h f

o→2 +h f
2→3. (S.2)

The frictional loss from point o to both point 1 and 2 is negligible, for no ventricular wall effect is assumed. This leads to

h f
1→4 +h f

4→3 = h f
2→3. (S.3)

Applying Poiseuille’s law to estimate frictional loss, we obtain(
l

d4

)
Qk +

k

∑
i=1

[(
mL
D4

)
Qi

]
=

(
l

d4

)
Qk+1, k = 1,2, · · · ,(n−1). (S.4)

The total flow rate Q is equal to the sum of all flow rates.

n

∑
i=1

mQi = Q. (S.5)
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Figure S1. 2D velocity profiles at the catheter holes discussed in §4.1. Each point of the experimental data is the mean value
of measured velocities of fluorescent particles whose x-position are within ±0.039d from the x-position of the point. Error bars
reflect the standard deviation over the measured velocities whose n is larger than 30. The theoretical Poiseuille profiles are
chosen to match the flow rate measured by the experiment. The CFD profiles are from the simulation where the flow rate at the
catheter outlet matches that of the experiment. The flow rate calculated by CFD was 1.012 times higher than that estimated by
the direct experimental measurements. Scale bar in the first top-left panel is 0.5 mm.
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Figure S2. (a) Schematic of experimental setup for 3D velocity profile measurement. Layered imaging was performed by
changing the z-location of the plane of focus. 5 µm green fluorescent particles (G0500, ThermoFisher) were used for flow
visualization. (b) Region of interest (ROI) with the width d = 1180 µm and height λ = 60 µm was recorded to obtain the
velocity profile. λ was set to 7% of the hole depth to ensure both the accuracy of velocity measurement and the use of the
highest sampling rate of the microscope. Fluorescence image was binarized by a contrast-thresholding technique in order to
selectively extract particles that are in focus. The binarized image was fed into our in-house particle tracking code to estimate
the particle velocity. Live video is also available in Movie S3. Scale bar is 100 µm.
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Figure S3. CFD simulation of flow in a ventricular catheter with the configuration of the upward-pointing triangle markers of
Figure 15. The Reynolds number is 25 (§3) – the higher value expected in these catheter systems. (a) Velocity field at the
catheter middle plane. Flows are pre-developed from the outside of the holes, as confirmed in our experiment (Fig. 11). Scale
bar is 1 mm. At the cross-sections S1 and S2, where the local Reynolds numbers of lumina and hole are maximized,
respectively, we find the following. (b) The CFD profile at the cross-section S1 is very well captured by a Poiseuille with 6%
error. (c) The CFD profile at S2 is also in agreement with the Poiseuille profile with 9% error. Here, Ux, Uy′ are the mean
velocities at S1 and S2, respectively. For both cross-sections, we use the same flow rate for the Poiseuille profiles and in the

corresponding CFD calculation. Here, we define the error as
‖VPoiseuille−VCFD‖2

‖VCFD‖2
, analogous to what we used in §4.1

.

Solving equations (S.4) and (S.5) together gives the flow rate distribution.
From Poiseuille’s law, we have

Qk =
πd3

32µ
τ

H
k , (S.6)

where µ is the viscosity of CSF and τH
k is the mean wall shear stress at the kth hole. For the flow rate at the kth lumen is

∑
k
i=1 mQi, the mean wall shear stress at the lumen is

τ
L
k =

32µ

πD3

k

∑
i=1

mQi = md̂ 3
k

∑
i=1

τ
H
i , where d̂ = d/D. (S.7)
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Figure S4. Schematic of the Poiseuille network model (PNM) proposed herein.

Plugging equation (S.6) into equation (S.4) gives

k

∑
i=1

τ
H
i =

l̂
md̂ 4

(
τ

H
k+1− τ

H
k
)
, where l̂ = l/L. (S.8)

Finally, substituting (S.6) into (S.5) leads to

n

∑
i=1

τ
H
i =

τd

md̂ 3
, where τd =

32µQ
πD3 . (S.9)

Equations (S.7) – (S.9) complete the Poiseuille network model for the typical ventricular catheter.
Now, we want to obtain the explicit formula of the wall shear stress sequence defined by equation (S.8). Suppose

τH
k = GkτH

1 . For k = j−1 and k = j, we obtain the following equations from (S.8).

G1 +G2 + · · ·+G j−1 =
1
c
(G j−G j−1), (S.10)

G1 +G2 + · · ·+G j−1 +G j =
1
c
(G j+1−G j), where c =

md̂ 4

l̂
. (S.11)

Subtracting (S.10) from (S.11) gives

G j+1− (c+2)G j +G j−1 = 0. (S.12)

We assume the explicit formula for Gk follows

Gk = Aα
k−1 +Bβ

k−1. (S.13)
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Given G1 = 1 and G2 = c+1, plugging (S.13) into (S.12) allows us to find A, B, α , and β as follows

A =
1
2
+

c

2
√

c2 +4c
, (S.14)

α = 1+
c+
√

c2 +4c
2

, (S.15)

B =
1
2
− c

2
√

c2 +4c
, (S.16)

β = 1+
c−
√

c2 +4c
2

. (S.17)

We can rearrange (S.15) into

c = α +
1
α
−2. (S.18)

Finally, plugging (S.18) into (S.14), (S.16), and (S.17) allows us to express Gk as a function of α

Gk =

(
αk +α1−k

α +1

)
. (S.19)

3 Defining region of interest in microfluidic experiments

3.1 Region of interest for long-term microfluidic experiments
During the long-term microfluidic experiments (§2.2), we monitored the cell confluency across a region where wall shear stress
is homogeneous. We performed a CFD simulation to obtain the wall shear stress field across the entire bottom surface as given
in Figure S5. We determined a region of interest (ROI) for the confluency measurement, where the wall shear stress at the
bottom surface is 3 mPa.

wall shear stress [mPa]

ROI

flow direction

Figure S5. Region of interest for monitoring the cell confluency of static and flow cultures over 48 hours (§2.2). In the region
(30 mm by 4 mm) centered at the channel, we have homogeneous wall shear stress of 3 mPa. Scale bar is 1 mm.

3.2 Region of interest for forced detachment experiments
For the forced detachment experiments (§2.3), we monitored the cell confluency across a region which was sufficiently upstream
but still exhibited the wall shear stress of 30 mPa. This allowed us to minimize error in estimating confluency, that could be
induced by the accumulation of astrocytes transferred from the upstream.

4 Confluency quantification
A Fiji/ImageJ plug-in based on a segmentation method proposed by Jaccard et al. [7] was used to estimate confluency of
astrocytes. The algorithm performs segmentation using a local thresholding method supplemented by halo correction. The
parameters of the algorithm are the standard deviation σ of a Gaussian kernel that is used to create the local contrast field of
an image and local-contrast threshold ε . The parameters were set (σ = 1.2, ε = 0.08) to capture consistently astrocytes in
phase-contrast images throughout this study. Figure S7 shows an example of the entire segmentation process. A phase-contrast
image is processed by the segmentation algorithm first and is then de-speckled by a median filter whose radius was two pixels
(2.64 µm). From the final image, we obtain the cell confluency.
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wall shear stress [mPa]

ROI

flow direction

Figure S6. Region of interest (5 mm by 4 mm) for monitoring cell confluency in forced detachment experiments §2.3. The
region to the right of the ROI was not optically measurable due to tubing connected to the inlet, letting us define the region of
interest (ROI) as shown here. Scale bar is 1 mm.

segmentation despeckle filtering

overlay of raw and final imagesraw image final image

Figure S7. Image segmentation used in astrocyte confluency estimation. Binarization based on a local contrast thresholding
method is performed, followed by noise reduction using median filter. The image is from a static culture at T = 72 h, whose
seeding density was 2.0 × 104 cells/cm2. Scale bar is 1 mm.

5 Dependence on dimensionless numbers

As given in the main article, the PNM provides the MWSS levels at the kth hole and lumen as follows

τ
H
k =

Gk

md̂ 3 ∑
n
i=1 Gi

τd , (S.20)

τ
L
k =

∑
k
i=1 Gi

∑
n
i=1 Gi

τd = Fkτd . (S.21)

In the above expressions, Gk is defined as

Gk =

(
αk +α1−k

α +1

)
, (S.22)

where

α = 1+
c+
√

c2 +4c
2

and c =
md̂ 4

l̂
. (S.23)

Here, using (S.20) and (S.21), we give mathematical proofs for the monotonic changes of the MWSS levels with respect to the
dimensionless numbers.
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5.1 Dependence of τH
1 to l̂

In order to show that τH
1 is monotonically increasing with respect to l̂, we show that ∂ ∑

n
i=1 Gi

∂ l̂
is negative. From (8), the

following equations hold:

G1 =
1
c
(G2−G1),

G1 +G2 =
1
c
(G3−G2),

G1 +G2 +G3 =
1
c
(G4−G3),

...

G1 +G2 + · · ·+Gk−1 =
1
c
(Gk−Gk−1) for 2≤ k. (S.24)

Summing up all the above gives:

(k−1)G1 +(k−2)G2 +(k−3)G3 + · · ·+2Gk−2 +Gk−1 =
1
c
(Gk−G1). (S.25)

Differentiating (S.25) with respect to c, reads:

(k−1)
dG1

dc
+(k−2)

dG2

dc
+(k−3)

dG3

dc
+ · · ·+2

dGk−2

dc
+

dGk−1

dc
=

1
c
(

dGk

dc
− dG1

dc
)− 1

c2 (Gk−G1). (S.26)

Rearranging (S.26), we obtain:

dGk

dc
=

1
c
(Gk−G1)+ c

(
(k−1)

dG1

dc
+(k−2)

dG2

dc
+(k−3)

dG3

dc
+ · · ·+2

dGk−2

dc
+

dGk−1

dc

)
+

dG1

dc
. (S.27)

From (S.22),

G1 = 1, (S.28)
dG1

dc
= 0, (S.29)

Gk−1 > 0 for 2≤ k. (S.30)

From (S.27) – (S.30), if dGi
dc > 0 for 2≤ i≤ (k−1), then dGk

dc > 0.
Equation (S.22) gives dG2

dc :

dG2

dc
=

d
dc

(c+1) = 1 > 0. (S.31)

Using mathematical induction on (S.27) – (S.31):

dGk

dc
> 0 for 2≤ k. (S.32)

Equation (S.32) can further extend to

n

∑
i=1

dGi

dc
=

d
dc

n

∑
i=1

Gi > 0 for 2≤ n. (S.33)

The derivative of ∑
n
i=1 Gi with respect to l̂ is

∂

∂ l̂

n

∑
i=1

Gi =
∂

∂ l̂

n

∑
i=1

Gi =
∂c
∂ l̂

d
dc

n

∑
i=1

Gi, (S.34)

which should be negative, given that inequality (S.33) is true and ∂c
∂ l̂

< 0 from (S.23).
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5.2 Dependence of τL
k to l̂

Here, we show that τL
k is monotonically increasing with l̂. Given τL

k = Fkτd , this requires us to show that

∂Fk

∂ l̂
=

∂

∂ l̂

(
∑

k
i=1 Gi

∑
n
i=1 Gi

)
> 0 for 1≤ k ≤ (n−1). (S.35)

From chain rule, the above becomes

∂

∂ l̂

(
∑

k
i=1 Gi

∑
n
i=1 Gi

)
=

∂c
∂ l̂

d
dc

(
∑

k
i=1 Gi

∑
n
i=1 Gi

)
> 0 for 1≤ k ≤ (n−1). (S.36)

Given that ∂c
∂ l̂

is negative from (S.23), the above inequality is equivalent to

d
dc

(
∑

k
i=1 Gi

∑
n
i=1 Gi

)
< 0 for 1≤ k ≤ (n−1). (S.37)

We now show that the inequality (S.37) is true. From equation (S.24),

∑
k
i=1 Gi

∑
n
i=1 Gi

=
Gk+1−Gk

Gn+1−Gn
. (S.38)

Substituting (S.22) into (S.38), we obtain

Gk+1−Gk

Gn+1−Gn
=

αk−α−k

αn−α−n , where α = 1+
c+
√

c2 +4c
2

. (S.39)

Based on the above,

d
dc

(
∑

k
i=1 Gi

∑
n
i=1 Gi

)
=

d
dc

(
Gk+1−Gk

Gn+1−Gn

)
=

d
dc

(
αk−α−k

αn−α−n

)
=−dα

dc
α−k+n−1

(αn−1)2(αn +1)2︸ ︷︷ ︸
f (α)

(−kα
2k+2n +nα

2k+2n +nα
2k− kα

2n + kα
2k−nα

2n + k−n)︸ ︷︷ ︸
g(α)

. (S.40)

Given the definition of α in (S.39), f (α) is always negative. Therefore, the above derivative is negative if and only if g(α) is
positive. This allows us to restate the claim to be shown as follows:

g(1) = 0, (S.41)

d
(
g(α)

)
dc

=
dα

dc
d
(
g(α)

)
dα

> 0, when α > 1. (S.42)

Showing the validity of (S.41) is trivial. For the inequality (S.42) consider first that dα

dc is positive according to the definition of
α , so we have to show that d(g(α))

dα
> 0. After algebraic manipulation, we obtain

d
(
g(α)

)
dα

> 0 if and only if
bn−bn−k

bn−1
>

k
n
, where b = α

2. (S.43)

We start by showing that bn−bn−k

bn−1 > k
n when k = n−1, to be used with induction to elucidate that the inequality holds also for

all k less than n.
When k = n−1,

bn−bn−(n−1)

bn−1
>

n−1
n

. (S.44)

Rearranging the above inequality,

(b−1)(bn−1 +bn−2 + · · ·+b+1−n)> 0, (S.45)
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which holds for all n given that b > 1.
Now, assuming that

bn−bn−k

bn−1
>

k
n
, (S.46)

we aim to show that

bn−bn−(k−1)

bn−1
>

k−1
n

. (S.47)

Using inequality (S.46),

bn−bn−(k−1)

bn−1
=

(
bn−bn−k

bn−1

)(
bn−bn−(k−1)

bn−bn−k

)
>

k
n

(
bn−bn−(k−1)

bn−bn−k

)
, (S.48)

we now want to show that

k
n

(
bn−bn−(k−1)

bn−bn−k

)
>

k−1
n

. (S.49)

Using equality (bn−1) = (b−1)(bn−1 +bn−2 + · · ·+b+1), we can rearrange inequality (S.49) as follows

bk−1 +bk−2 + · · ·+b2 +b > k−1. (S.50)

For b > 1, the above equality holds for every k. By the principle of mathematical induction, the claim (S.42) is thus proved and
we showed that τL

k monotonically increases with l̂.

5.3 Dependence of τH
k to d̂

Here, we aim to prove that

∂τH
k

∂ d̂
=

∂

∂ d̂

(
Gk

md̂ 3 ∑
n
i=1 Gi

τd

)
=

τd

m
∂

∂ d̂

(
Gk

d̂ 3 ∑
n
i=1 Gi

)
< 0. (S.51)

Since τd/m > 0, proving the above inequality is equivalent to showing that

∂

∂ d̂

(
Gk

d̂ 3 ∑
n
i=1 Gi

)
=

∂

∂ d̂

(
Gn

d̂ 3 ∑
n
i=1 Gi

Gk

Gn

)
=

∂

∂ d̂

(
Gn

d̂ 3 ∑
n
i=1 Gi

)
︸ ︷︷ ︸

h(d̂)

Gk

Gn
+

∂

∂ d̂

(
Gk

Gn

)
︸ ︷︷ ︸

p(d̂)

Gn

d̂ 3 ∑
n
i=1 Gi

< 0. (S.52)

Both Gk
Gn

and Gn
d̂ 3 ∑

n
i=1 Gi

are positive, leading us to claim that both h(d̂) and p(d̂) are negative.

Let’s show first that

h(d̂) =
∂

∂ d̂

(
Gn

d̂ 3 ∑
n
i=1 Gi

)
< 0. (S.53)

From the definition of α and Gk, we have

1
d̂ 3

=

(
mα

l̂(α−1)2

)3/4

, (S.54)

Gk

∑
n
i=1 Gi

=
(α−1)(α +α2k)α−1−k+n

α2n−1
. (S.55)

Plugging (S.54) and (S.55) into equation (S.53), we have

∂α

∂ d̂

(
3α−α2 +α4n−3α4n+1 +α2n+2(1−8n)+α2n(−1+8n)

4α2(α +α−1−2)3/4(α2n−1)2

)
< 0. (S.56)
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Since both ∂α/∂ d̂ and 4α2(α +α−1−2)3/4(α2n−1)2 are positive, inequality (S.56) is equivalent to

3α−α
2 +α

4n−3α
4n+1 +α

2n+2(1−8n)+α
2n(−1+8n) = q(α)< 0. (S.57)

q(α) can be rearranged into

q(α) = 3α−α
2 +α

4n−3α
4n+1 +α

2n+2(1−8n)+α
2n(−1+8n)

=−(α−1)
(
2(α4n−1 +α

4n−2 + · · ·+α
3 +α

2)+3(α4n +α)+(8n−1)α2n(α +1)
)
, (S.58)

which is negative, given α > 1 and n > 1. This therefore proves that h(d̂)< 0.
Now, let’s show that

p(d̂) =
∂

∂ d̂

(
Gk

Gn

)
< 0. (S.59)

Using the definition of Gk,

p(d̂) =
∂

∂ d̂

(
Gk

Gn

)
=

∂

∂ d̂

(
α1−k +αk

α1−n +αn

)
=

∂α

∂ d̂
d

dα

(
α1−k +αk

α1−n +αn

)
=

∂α

∂ d̂

(
αn−k−1

(
(n− k)(α2−α2(n+k))+(n+ k−1)α2k+1(1−α2(n−k))

)
(α +α2n)2

)
. (S.60)

Provided that n > k > 0, α > 1, and ∂α

∂ d̂
> 0, p(d̂) is negative by (S.60) .

We showed that both h(d̂) and p(d̂) are negative, proving the claim inequality (S.51).

5.4 Dependence of τH
k to m

Here, we want to prove that

∂τH
k

∂m
=

∂

∂m

(
Gk

md̂ 3 ∑
n
i=1 Gi

τd

)
=

τd

d̂ 3

∂

∂m

(
Gk

m∑
n
i=1 Gi

)
< 0. (S.61)

Since τd/d̂ 3 > 0, proving the above expression is equivalent to

∂

∂m

(
Gk

m∑
n
i=1 Gi

)
=

∂

∂m

(
Gn

m∑
n
i=1 Gi

Gk

Gn

)
=

∂

∂m

(
Gn

m∑
n
i=1 Gi

)
︸ ︷︷ ︸

q(m)

Gk

Gn
+

∂

∂m

(
Gk

Gn

)
︸ ︷︷ ︸

r(m)

Gn

m∑
n
i=1 Gi

< 0. (S.62)

Both Gk
Gn

and Gn
m∑

n
i=1 Gi

are positive, leading us to claim that both q(m) and r(m) are negative.
Let’s show first that

q(m) =
∂

∂m

(
Gn

m∑
n
i=1 Gi

)
< 0. (S.63)

From the definition of α and Gk, we have

1
m

=
d̂ 4

l̂

(
α

(α−1)2

)
, (S.64)

Gk

∑
n
i=1 Gi

=
(α−1)(α +α2k)α−1−k+n

α2n−1
. (S.65)

Inserting (S.64) and (S.65) into (S.63), we have

∂α

∂m

(
α−α4n+1 +2nα2n−2nα2n+2

(α−1)2α(αn−1)2(αn +1)2

)
< 0. (S.66)
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Since both ∂α/∂m and (α−1)2α(αn−1)2(αn +1)2 are positive, inequality (S.66) is equivalent to

α−α
4n+1 +2nα

2n−2nα
2n+2 = w(α)< 0. (S.67)

w(α) can be rearranged into

w(α) = α(1−α
4n)+2nα

2n(1−α
2), (S.68)

which should be less than zero, given α > 1 and n > 1. This therefore proves q(m)< 0.
Now, let’s show that

r(m) =
∂

∂m

(
Gk

Gn

)
< 0. (S.69)

Using the definition of Gk,

r(m) =
∂

∂m

(
α1−k +αk

α1−n +αn

)
=

∂α

∂m
d

dα

(
α1−k +αk

α1−n +αn

)
. (S.70)

We show that d
dα

(
α1−k+αk

α1−n+αn

)
< 0 in (S.60). Provided that n > k > 0, α > 1, and ∂α

∂m > 0, r(m) should be less than zero.

We showed that both q(m) and r(m) are negative, thus proving the claim inequality (S.61).

5.5 Dependence of τL
k to d̂ and to m

Since both ∂c
∂ d̂

and ∂c
∂ m̂ are positive by (S.23), proving ∂τL

k
∂c < 0 is sufficient to show that

∂τL
k

∂ d̂
< 0 and

∂τL
k

∂m
< 0. (S.71)

By the definition of τL
k , we have

∂τL
k

∂c
=

∂

∂c

(
∑

k
i=1 Gi

∑
n
i=1 Gi

τd

)
= τd

d
dc

(
∑

k
i=1 Gi

∑
n
i=1 Gi

)
< 0, (S.72)

which is true since inequality (S.37) holds.

5.6 Graphical representation of effects of dimensionless numbers
While the prior section offers the mathematical proofs of the monotonic changes of the MWSS values with respect to
dimensionless numbers, here, we additionally provide graphical representations (Fig. S8) that show such monotonic changes of
MWSS values over changing dimensionless numbers. All graphs here result from the PNM.

6 Viscosity measurement of human subject CSF
The CSF collection from 37 patients was approved by the Institutional Review Board at Boston Medical Center (BMC; approval
number H-37724), and informed consent was obtained from each participant prior to collection of non-infectious CSF from
patients undergoing Lumbar Puncture (LP) at BMC’s neurology clinic. The samples were from patients with pseudotumor (n =
26), papilledema (n = 6), headaches (n = 2), multiple sclerosis (n = 1), gait instability (n = 1), and neurosyphilis (n = 1) (Tab. 1).

The collected samples were preserved at −80·C before commencing with the viscosity measurement using a rotational
shear rheometer with a 60 mm cone head (Discovery HR-1, TA Instruments). The viscosity was measured under shear rates γ̇

that ranges from 85 to 1,000 s−1; at shear rates under 85 s−1, we found that an error due to surface tension occurring at the
interface between the head and sample became important [6], as is expected for these low ranges of viscosity close to water.
This can be seen in Figures S9 and S10, where the viscosity of CSF (at 37·C) is shown to be larger than that of water (0.69
mPa·s), exhibiting slight shear thinning particularly under ∼500 s−1.

11/21



CSF index diagnosis CSF index diagnosis CSF index diagnosis CSF index diagnosis
1 pseudotumor 11 pseudotumor 21 pseudotumor 31 pseudotumor
2 pseudotumor 12 pseudotumor 22 papilledema 32 pseudotumor
3 papilledema 13 pseudotumor 23 multiple sclerosis 33 pseudotumor
4 pseudotumor 14 pseudotumor 24 pseudotumor 34 pseudotumor
5 pseudotumor 15 papilledema 25 pseudotumor 35 headaches
6 pseudotumor 16 pseudotumor 26 gait instability 36 pseudotumor
7 pseudotumor 17 pseudotumor 27 papilledema 37 headaches
8 pseudotumor 18 papilledema 28 pseudotumor
9 pseudotumor 19 pseudotumor 29 pseudotumor

10 pseudotumor 20 pseudotumor 30 neurosyphilis

Table 1. Diagnoses of 37 CSF samples. The index used here is matched with that of Figures S9 – S12. No hemorrhage was
involved in all samples.

6.1 Characterization of shear thinning
We use the the Ostwald–de Waele power-law [12], which has been widely used to describe non-newtonian fluids [1; 4].
Considering a circular pipe flow described in cylindrical coordinate system. The shear stress, τ , of an Ostwald–de Waele fluid
follows

τ = K
(
− ∂uz

∂ r

)n

=−K
[(
− ∂uz

∂ r

)n−1]
︸ ︷︷ ︸

µ

(
∂uz

∂ r

)
, (S.73)

where K is the flow consistency index (Pa · sn), ∂uz
∂ r is the shear rate (s−1), n is the dimensionless flow behavior number, and µ

is the viscosity of the fluid (Pa · s).
In the law, n > 1, n < 1, and n = 1 represent shear thickening, thinning, and Newtonian behavior, respectively. We estimate

the flow behavior index n of each CSF human subject sample, using curve-fitting over γ̇ = 85 – 300 s−1, where shear thinning is
clearly observed. The flow behavior indices of all of the CSF samples lie in the 0.71 – 0.95 range, with mean value of 0.83 and
standard deviation of 0.06.

Here, we show that the Poiseuille assumption provides us a conservative estimate of wall shear stress in the catheter system,
i.e., lower WSS than that estimated from the power-law (S.73). Indeed, the power-law, (S.73), provides the wall shear stress of
the fully-developed laminar flow in a circular tube as

τw = K
[(

3n+1
n

)
8Q

πD3

]n

, (S.74)

where Q is the flow rate, and D is the diameter of the tube. To quantify the order of magnitude of the ratio between WSS levels
under a Newtonian and a shear thinning assumption we make the comparison at the lumen’s most downstream point of the
catheter (e.g., L8 in Figure 10). Matching the total flow rate, we introduce the ratio between the WSS levels defined by (S.74)
and the Poiseuille’s law.

r =
τw|power-law
τw|Poiseuille

=
K
4µ

(
3n+1

n

)n( 8Q
πD3

)n−1

. (S.75)

To estimate this ratio, we use the sets of K and n that can be obtained from the measured data (Figs. S9 – S12). In current
commercial shunt, the upper bound of the flow rate is 1 mL/min and the lower bound of D is 1 mm [5; 11]. Setting µ = 0.8
mPa, which is close to the smallest viscosity that the samples have (Figs. S9 – S12), we obtain a lower bound of the ratio
3.83< r <6.33. Hence, Poiseuille’s law with µ = 0.8 mPa provides a conservative value of WSS – lower than that of the
power-law – when optimizing catheter design to maximize shear stress.

Note that the above analysis provides us first-order estimates, given the inherent limitation of the power-law: its non-physical
predictions of zero viscosity as ∂uz/∂ r→ ∞ or infinite viscosity at zero shear rate; yet, realistic fluids would have maximum
and minimum viscosity values that are inherent to the physico-chemistry of the fluid. The law can provide a reasonable estimate
of viscosity over the range of shear rates across which the curve-fitting is performed, but not necessarily for the other ranges.
Our CFD simulations of the catheter flow, with Newtonian CSF, provide an order of magnitude of the upper bound of the shear
rate involved: ∼ 300 s−1. Our curve-fitting for the power law is performed for γ̇ = 85 - 300 s−1.
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In order to have more accurate estimation for the ratio (S.75), we further performed CFD simulations (Fluent 2019 R1),
considering shear thinning described by the power-law (S.73) with the upper and lower bounds of shear rate where the law is
valid. In the simulations, we used the scenario 1’s catheter in §4.2, finding that WSS under the Newtonian condition is indeed
smaller than those under the power-law conditions (Fig. S13). Based on K and n from a sample (CSF15 in Figure S10), which
shows the largest n among our samples, we design three different scenarios: 1) Newtonian CSF with µ = 0.8 mPa·s, which is
the lowest viscosity of the sample; 2) shear thinning CSF that follows (S.73) for γ̇ = 100 – 800 s−1; and 3) shear thinning CSF
that follows (S.73) for γ̇ = 0.01 – 800 s−1. The Reynolds number of the Newtonian scenario is 10, a moderate value of the
regimes of the system, and all scenarios share the same flow rate. Note that both shear-thinning cases also have the lowest
viscosity of 0.8 mPa·s. Given that the viscosity under γ̇ = 85 s−1 was not measurable due to the capillary effect, we simulated
two extreme cases, where the shear thinning disappears at 100 s−1, slightly larger than the lower limit of the measurable range,
or at 0.01 s−1, a thousand times lower than for the first case. In either cases, we confirm that the MWSS at each section is larger
than that estimated with the Newtonian fluid. Here, we can confirm that the Newtonian approximation provides the conservative
limit to use for optimization of the catheter flow.

6.2 Inertia- and surface tension-induced bias in viscosity measurement
Measurement of low viscosity values of fluids using a rotational rheometer involves two major sources of error: inertia- and
surface tension-induced errors [6]. The inertia error refers to an additional viscous dissipation due to secondary flow in the
sample not sufficiently damped in low-viscosity fluids, or high Reynolds number regimes of operation in particular. In the
measurement setting we have, the Reynolds number is defined as Rer =

ρωβ 2R2

µ
, where ρ the sample density, µ is the sample

dynamic viscosity, and ω , β , and R are the angular velocity, cone angle, and radius of the head, respectively. The additional
torque on the head due to this inertia effect was calculated by Turian [13] to be

T
To

= 1+
3

4900
Re2

r , (S.76)

where To and T are the torque due to viscous dissipation without and with inertia effect, respectively. The measured viscosity is
proportional to the measured torque [10]:

T =
2πR3ω

3β
µ, (S.77)

which applies to the viscosity measurement with a cone head. From (S.76) and (S.77), we obtain

µm

µo
= 1+

3
4900

(
ρωβ 2R2

µo

)2

, (S.78)

where µm is the measured viscosity including inertia effect. In the above equation, we can solve for µo, the corrected viscosity.
Note that all of the data given in Figures S9 – S12 are corrected by this method.

At low shear rates, an additional torque due to capillary effects on the head becomes important. Correcting for this effect is
not trivial nor well understood [8]. Hence, we focus the range of shear rates for which the additional capillary-induced torque is
negligible compare to the torque introduced by viscous forces.

We first performed viscosity measurement on deionized water, notoriously difficult due to the above two effects, at 37C· to
find the lower bound of the range for water. Using the same protocols as those used for the CSF viscosity measurement, we
measured the viscosity of water at 37·C and γ̇ = 63 and 85 s−1 (n = 11). We performed one-pair t-tests on the data, having the
null hypothesis that the viscosity of water is 0.69 mPa·s [9].

We found that the p-value of the data from γ̇ = 8.5 s−1 is 0.03, while that from γ̇ = 85 s−1 is 0.06. Applying a 5% significance
level, we selected γ̇ = 85 s−1 as the lower bound of the range for water where the surface tension effect can be neglected. The
surface tension of CSF is lower than that of water at 37◦C [2]. Moreover, the viscosity of CSF is higher than that of water as
shown in our data. This concludes that the cutoff shear rate for CSF can be lower than that for water. Based on this, we select γ̇

= 85 s −1 as cutoff shear rate for which measurement of viscosity of CSF is reasonably accurate.

7 Example of multi-objective optimization
We illustrate an example of the multi-objective optimization based on the Poiseuille network model (PNM) and a genetic
algorithm [3]. This approach enables us to develop Pareto optimal solutions for which optimization of one design objective
necessitates compromising another design objective. Using the gamultiobj function in MATLAB R2018b, we compute the
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Pareto optimal solutions of catheters whose geometric structure is as shown in Figure 17a. Figure S14 shows a set of Pareto
solutions with two design objective, namely 1) minimizing the standard deviation of flow rates across holes and 2) maximizing
the minimum MWSS levels across all sections. Note that the PNM can be used to readily compute the flow rate distribution
from the wall shear stress distribution, using Poiseuille’s law (Eq. (S.6)).

8 Partial blockage and low wall shear stress zone formation
We offer a CFD simulation that illustrates how a partial blockage of one of the most proximal holes (i.e., the highest hole index)
of the catheter used in Scenario 1 in §4.2 can affect the wall shear stress distribution through the same hole. Figure S15 shows
that a partial blockage at one of the most proximal hole induces strong inhomogeneity of the local wall shear stress distribution
at the hole, resulting in the formation of zones where wall shear stress is less than that of the unblocked case. This result implies
that upon partial blockage due, for example, bulk tissue aspiration the space between the aspirated tissue and the hole wall may
favor cellular ingrowth that may in time lead to formation of adhesion between the bulk tissue and the locally adhering cells.
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Figure S8. Monotonic changes of the MWSS levels with respect to different dimensionless numbers over different
combinations of n and k. (a) the MWSS at the first hole (i.e., the minimum MWSS across holes) exhibits a monotonic increase
with increased l̂. (b) the MWSS levels at lumina also increase over increased l̂. (c) and (d) the MWSS levels at holes and
lumina increase with decreased d̂. (e) and (f) the MWSS levels monotonically increase upon decreased m. In every graph,
m = 2, l̂ = 0.6, and d̂ = 0.75, otherwise specified.
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Figure S9. Viscosity of CSF samples (CSF01 – 12) from different patients. The dash line indicates the viscosity of water at
37·C. Error bars reflect the standard deviation over three independent measurement performed.
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Figure S10. Viscosity of CSF samples (CSF13 – 24) from different patients. The dash line indicates the viscosity of water at
37·C. Error bars reflect the standard deviation over three independent measurement performed.
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Figure S11. Viscosity of CSF samples (CSF25 – 36) from different patients. The dash line indicates the viscosity of water at
37·C. Error bars reflect the standard deviation over three independent measurement performed, except in CSF25 and 29 where
two independent measurement performed.
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Figure S12. Viscosity of CSF sample (CSF37). The dash line indicates the viscosity of water at 37·C. Error bars reflect the
standard deviation over three independent measurement performed.

(a) (b)

Figure S13. CFD simulations with the power-law describing shear thinning of CSF (S.73). (a) Two power-law models have
different lower bounds for the range over which the (S.73) applies. K and n are 0.0053 and 0.71, respectively, sampled from
CSF15 in Figure S10. Note that both models have the same lowest viscosity which is the viscosity of the Newtonian model. (b)
Mean wall shear stress (MWSS) distribution calculated by CFD simulations with the viscosity models of (a). Shear thinning
models give higher MWSS, compared to the Newtonian model. This confirms our first-order theoretical calculation for the ratio
(S.75), given in §S-6.1
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Figure S14. Pareto optimal solutions having two objectives: minimizing the standard deviation of flow rates and maximizing
the minimum of MWSS values of sections. The y-axis is the standard deviation σ of flow rates, normalized by the total flow
rate Q. The catheter geometry in Figure 17a is used under proper geometric constraints that are relevant and consistent with
current commercial catheters. Note that the solution with the highest minimum MWSS (i.e., the most left-top) is indeed
corresponding to the design in Figure 17b.
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Figure S15. Effect of partial blockage of one of the most proximal holes on local wall shear stress distribution. (a) and (b) are
wall shear stress heat-maps without blockage. (c) and (d) show that a partial blockage results in the formation of zones with
lower wall shear stress (4 mPa), compared with that of the unblocked case (15 mPa), which corresponds to schematics (a) and
(b). The catheter used here is that from the Scenario 1 in §4.2. Both cases were simulated with the same total flow rate of 0.3
mL/min.
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