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ABSTRACT Objective: Novel applications of transcranial Doppler (TCD) ultrasonography, such as the
assessment of cerebral vessel narrowing/occlusion or the non-invasive estimation of intracranial pressure
(ICP), require high-quality maximal flow velocity waveforms. However, due to the low signal-to-noise ratio
of TCD spectrograms, measuring the maximal flow velocity is challenging. In this work, we propose a
calibration-free algorithm for estimating maximal flow velocities from TCD spectrograms and present a
pertaining beat-by-beat signal quality index.Methods:Our algorithm performsmultiple binary segmentations
of the TCD spectrogram and then extracts the pertaining envelopes (maximal flow velocity waveforms) via
an edge-following step that incorporates physiological constraints. The candidate maximal flow velocity
waveform with the highest signal quality index is finally selected. Results: We evaluated the algorithm on
32 TCD recordings from themiddle cerebral and internal carotid arteries in 6 healthy and 12 neurocritical care
patients. Compared to manual spectrogram tracings, we obtained a relative error of−1.5%, when considering
the whole waveform, and a relative error of −3.3% for the peak systolic velocity. Conclusion: The feedback
loop between the signal quality assessment and the binary segmentation yields a robust algorithm for maximal
flow velocity estimation.Clinical Impact:The algorithm has already been used in our ICP estimation pipeline.
By making the code and the data publicly available, we hope that the algorithmwill be a useful building block
for the development of novel TCD applications that require high-quality flow velocity waveforms.

INDEX TERMS Transcranial Doppler ultrasound, maximal blood flow velocity, envelope tracing, signal
quality assessment, intracranial pressure estimation.

I. INTRODUCTION
Due to its non-invasiveness, relatively low cost, and the
possibility of repeated and continuous bedside measure-
ments, Doppler ultrasonography is routinely used for assess-
ing blood flows in different organs [1]. In neuro-monitoring,
transcranial Doppler (TCD) ultrasonography has been sug-
gested for the diagnosis of stenosis [2], vasospasms [3],
and large cerebral vessel occlusions, which are character-
ized by alterations in blood flow velocities and waveform
morphologies [4], [5]. Recent work also suggests that TCD
ultrasonography, combined with minimally-invasive blood
pressure measurements, can be used for monitoring cere-
bral autoregulation [6], [7] and for obtaining non-invasive
estimates of intracranial pressure (ICP) [8]–[11]. In most
neuromonitoring applications, the quantity of interest is the

maximal blood flow velocity waveform, which together with
measurements or assumptions on the vessel geometry, can be
used to estimate volumetric blood flow.

A. PULSED DOPPLER ULTRASONOGRAPHY
Pulsed Doppler ultrasonography is commonly employed to
obtain blood flow velocity measurements [12]. In pulsed
Doppler ultrasound, short acoustic pulses with a fixed carrier
frequency fc are emitted toward a target segment of a blood
vessel. In the insonated target volume, the acoustic pulses are
reflected by an ensemble of scatterers (red blood cells), mov-
ing at different velocities. Reflection of the acoustic pulses
from moving red blood cells leads to characteristic frequency
shifts in the ultrasound echo signal (see Section II-A). The
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received echo signal is sampled, digitized, demodulated, and
split into its in-phase and quadrature components that are
denoted by the (complex-valued) time-domain signal IQ[·].
The time-varying frequency content of the demodulated echo
signal and therefore the velocity distribution of the scatterer
ensemble is then obtained by spectral analysis of the IQ[·]
signal. We denote the time-frequency (or time-velocity) spec-
trogram as SP[·, ·], where the first argument is time and
the second frequency or equivalently velocity, as in Fig. 1.

FIGURE 1. Top: Doppler spectrogram obtained by insonating the
M1 segment of the middle cerebral artery. The frequency shift is
converted to a velocity, such that the cerebral blood flow velocity (CBFV)
is expressed in cm/s. The spectrogram shows varying levels of intensity
and a signal loss between 2 s to 4 s. The algorithmically determined
envelope is marked in red. Bottom: Doppler spectrogram and envelope
obtained from the internal carotid artery.

The envelope of the Doppler spectrogram (see Fig. 1)
corresponds to the maximal flow velocity, which is the TCD
quantity of greatest clinical relevance [12]. For example,
Doppler ultrasound indices – such as the pulsatility or resis-
tivity indices [13] – are defined in terms of the maximal
flow velocity. A further advantage is that for measuring
the maximal flow velocity, it is sufficient that the sample
volume contains the center segment, where the velocity of
the scatterers is the highest in laminar flow. By contrast,
to obtain themean flow velocity it would be necessary that the
cross-sectional area of the sample volume matches the blood
vessel.

B. LITERATURE REVIEW
The TCD spectrogram tracing algorithms employed in com-
mercial ultrasound systems are commonly proprietary and
integrated into the software of ultrasound machines. Due
to the desire for immediate visualization of maximal flow
velocity waveforms in the clinics, these algorithms aremainly
tailored to (near) real-time operation [14], [15]. However,
for an increasing number of applications as for example
model-based estimation of ICP [11], [16], high-quality flow
velocity waveforms are required, whereas real-time operation
is not a hard constraint. The algorithms in [8] and [11],
for example, return an estimate of mean ICP every minute.
The possibility of offline processing consequently paves the

way for more elaborate algorithms for obtaining high-quality
maximal flow velocity waveforms.

In the academic literature, one can mainly identify three
types of approaches for maximal flow velocity estimation.
First, classical methods based on noise threshold estima-
tion [17] and variants thereof [18]. The modified threshold
crossing method (MTCM) evaluated in [19], for example,
compares a group of spectral samples (selected from a col-
umn of the spectrogram SP[·, ·]), starting from the noise-end
of the spectrogram, with a preset threshold. Once a suffi-
cient number of samples in the group exceed the threshold,
the maximal flow velocity is set as the highest frequency bin
in the group. This approach is popular due to its simplicity, but
its performance depends on the choice of the preset threshold
and the intensity distribution of the spectrogram samples
at each time point. The second type of approaches employ
image processing techniques, such as edge-detection and
edge-following [20], [21]. The third type of approaches use
parametric waveform models that are fit to single frequency
bins of the spectrogram [22].

An example of a supervised edge-detection and edge-
following algorithm was presented in [21], where the authors
propose a two-step approach: In the first step, the intensity
histogram of each spectrogram sub-window is compared,
via the Kullback–Leibler divergence, to the intensity distri-
bution of a segment that is known to contain noise only.
On the thresholded image, a standard edge enhancement
algorithm (difference of Gaussians) is run. In the second step,
the obtained envelope is modeled as a white noise accelera-
tion model and is filtered using a Kalman filter. Similarly,
in [20] an algorithm is proposed that uses a nonlinear Laplace
edge detector, whose result is then refined by eliminating
spurious edges via the flood-fill algorithm. Since at each time
point (that is, for each column of the spectrogram) there is
only one maximal flow velocity and since the flow velocity
must fulfill certain physiological constraints, physiological
sanity-checks can be put in place to avoid spurious edges and
obtain better envelopes, as discussed in Section II.
By contrast, in [22] the spectrogram is treated as multiple

time series (one for each frequency bin) and a parametric
model is fit to each time series. In this model-based approach,
a Gamma function is used as a parametric model for the
blood flow velocity waveform. Such parametric approaches,
based for instance onGamma functions or Gaussianmixtures,
will often produce smooth-looking envelopes [22]. However,
a drawback of such analytical functions is that they lack a
physiological basis and for distal vessels the ‘‘rounded’’ beat
wavelet lacks details such as the dicrotic notch and other
fiducial points. Furthermore, different arteries have quite a
different waveformmorphology, as shown in Fig. 1, such that
each vessel would require a tailored parametric model.

In this paper, we propose an offline algorithm for esti-
mating maximal blood flow velocities from Doppler spectro-
grams. The proposed algorithm is calibration-free and fully
unsupervised. Its main novelty is a feedback loop between a
signal quality index and an image segmentation algorithm.
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In addition to parameter selection, the signal quality algo-
rithm provides a beat-by-beat measure of confidence for the
reported blood flow velocity waveform. This can be useful
when passing the blood flow velocity signal to downstream
processing algorithms and when interpreting derived quanti-
ties such as the pulsatility index or noninvasive ICP estimates.
The code and the data is available on the IEEE DataPort [23].

II. ESTIMATION OF THE MAXIMAL FLOW VELOCITY
The starting point of our algorithm is the demodulated
time-domain echo signal IQ[·]. To obtain the maximal flow
velocity waveform from the demodulated echo signal we first
compute its spectrogram SP[·, ·]. Then, we run an envelope
tracing algorithm, and finally perform post-processing steps
on the detected envelope to enhance the quality of the maxi-
mal flow velocity waveform (Fig. 2).

FIGURE 2. Maximal flow velocity estimation pipeline. The demodulated
echo signal IQ[·] is converted to the spectrogram SP[·, ·] via the
short-time Fourier transform (STFT). Then, the maximal flow velocity
waveform (envelope of the spectrogram) v̂ [·] is computed, and finally the
flow velocity is filtered to remove noise and outliers.

A. SPECTROGRAM COMPUTATION
Low-frequency reverberations due to vessel wall movements
are a major source of disturbance when measuring blood
flows [24]. These disturbances can be removed from the
IQ signal with a high-pass filter (so-called wall filter), for
which we used a second-order Butterworth filter with a cutoff
frequency of 100Hz. We obtain the spectrogram by com-
puting the power spectral density on small windows (e.g.,
10 ms) of data with 75% overlap. Subsequently, we apply a
log-compression to reduce the dynamic range of the intensity
values. Then, we divide by the maximal intensity of the spec-
trogram and in addition set all negative log-intensity values
to zero. The intensity values of the transformed spectrogram
thereby fall into the range [0, 1] (see Fig. 1 for a color scale.)
Finally, the frequency shift 1f is converted to the velocity v
via

v =
1f · c

2fc cos(α)
, (1)

where c = 1540 m/s is the assumed (average) speed of
sound in tissue, α the angle between the direction of the
ultrasound beam and the flow velocity vector, and fc =
1.75 MHz the carrier frequency of the ultrasound pulse.
The sampling frequency of the demodulated echo signal
(given the settings used in our acquisition) was f Echos =

6.944 kHz. Therefore, the range of detectable frequency shifts
is [−f Echos /2,+f Echos /2]. Taking the maximally detectable
positive frequency shift of +f Echos /2 = 3.472 kHz, Eq. (1)
results in a maximally detectable flow velocity of about
152 cm/s, given our chosen acquisition parameters. Since we
had no information on the insonation angle, we set α = 0◦ for

all recordings, which is commonly a reasonable assumption
for the middle cerebral artery (MCA) and internal carotid
artery (ICA). In addition, many applications such as the
non-invasive estimation of ICP [8], [11] require only a scaled
version of the maximal cerebral blood flow velocity. In the
following, we describe the algorithm used to obtain maximal
blood flow velocity estimates from the Doppler spectrogram.

B. OVERVIEW OF THE FLOW VELOCITY ESTIMATION
ALGORITHM
High intensity pixels in the TCD spectrogram (see Fig. 4)
indicate the presence of a collection of scatterers flowing
through the sample volume with a particular velocity rela-
tive to the probe, whereas noise regions are characterized
by being (significantly) darker. Therefore, one approach to
find the maximal flow velocity is to perform a binary black-
and-white (B&W) segmentation of the spectrogram to sep-
arate signal (white) from noise (black). The goal then is to
find for each time step the maximal flow velocity, that is,
the pixel with the highest flow velocity that still belongs to
the signal-carrying part of the spectrogram.

FIGURE 3. Flow chart of the envelope tracing (maximum flow velocity
estimation) algorithm, representing the red box in Fig. 2.

The flow chart in Fig. 3 provides a high-level overview of
themaximal flow velocity estimation algorithm. To obtain the
maximal flow velocity waveform, we first pick a candidate
intensity threshold γ to perform a binary segmentation of the
spectrogram (B&W thresholding) and then run a 2D median
filter to remove speckle noise. Subsequently, we perform
an envelope tracing step and finally assess its signal quality
through a series of physiological sanity checks and template
matching. If the signal quality of the candidate flow velocity
estimate v, obtained using the candidate threshold, exceeds
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the quality of the best flow velocity waveform obtained so far,
we set the current flow velocity waveform as the current best
waveform v̂. Once the maximal number of preset iterations
is reached, that is, all grayscale thresholds have been tested,
we terminate the algorithm and return the maximal flow
velocity waveform v̂ that has the highest signal quality. In the
following, we describe the image segmentation and envelope
tracing approaches in more detail.

FIGURE 4. Histogram of grayscale values of Doppler spectrogram. The red
bar indicates the Otsu threshold that separates the signal (above
threshold) from noise.

C. BINARY SEGMENTATION OF THE SPECTROGRAM
Figure 4 shows a histogram of grayscale values in the range
[0, 1] from a 30 s spectrogram segment. Since there is con-
siderable overlap between the grayscale values of the signal
and the noise, using a fixed, predetermined segmentation
threshold to binarize the spectrogram and then taking the
maximal flow velocity at each point in time would not result
in an acceptable maximal flow velocity estimate. Given the
bi-modal shape of the histogram, however, we can expect
a reasonable separation between signal and noise by binary
image segmentation, though the optimal threshold remains
to be determined on a window-by-window basis. To obtain
an initial estimate of the segmentation threshold, we employ
Otsu’s method [25], which performs binary clustering of the
image’s binned grayscale values. Otsu’s method uses the
same cost function as the k-means algorithm [26], namely the
minimization of the within-class variance. However, unlike
k-means clustering, it uses the fact that each pixel is a
scalar (grayscale) value, which allows for the method to
perform an exhaustive search for an optimal segmentation
threshold γ ∗.

Our final objective, however, is not the minimization of
the within-class variability, but to perform a binary image
segmentation such that the recovered envelope of the spec-
trogram represents as closely as possible the true maximal
flow velocity. In fact, the spectrogram envelope obtained
solely from binary segmentation based on Otsu’s method
tends to be overly flat, that is, the peak velocity tends to be
underestimated. Nonetheless, the optimal grayscale threshold
computed with Otsu’s method provides a good starting point,

and – in our experience – small adaptations of this threshold
oftentimes lead to accurate spectrogram envelope estimates.

In our proposed algorithm, we therefore perform a grid
search around the threshold γOtsu = γ ∗ computed via Otsu’s
method. We can, for instance, use the following segmentation
thresholds

γ ∈ {0.9γOtsu, 0.95γOtsu, γOtsu, 1.05γOtsu, 1.1γOtsu} = 0.

(2)

Then, the spectrogram is binarized with each threshold (see
Fig. 3). Since the binarized images usually still contain some
speckles (see second row of Fig. 5), these residual speckles
should be removed before performing the envelope detection.
Given the shape of the speckles, this is done with a 2D
median filter with a kernel whose horizontal length is 0.03 s
and whose vertical length is 5 cm/s. For obtaining a good
segmentation threshold via Otsu’s method, it is beneficial to
choose an appropriate region of the spectrogram on which
the grayscale threshold is computed. Ideally, the two classes
– the signal and the noise – should be balanced [26]. Since
both negative flow (e.g., in the ICA) and positive flow (e.g.,
in the MCA) can occur (see Fig. 10), we compare the energy
in the positive spectrogram region (5 cm/s up to 125 cm/s) to
the energy in the negative region (-125 cm/s up to -5 cm/s)
and take the region with the highest energy (sum of pixel
intensities) as the signal-containing region. The spectrogram
window starts at ±5 cm/s in order to exclude the stop-band
region of the wall filter; see dark region around 0 cm/s
in Fig. 1. Note that with this approach, we cannot detect
reverse flow, that is, flow velocities that range from negative
to positive values.

FIGURE 5. First row: Automatic envelope tracing by proposed
algorithm (red) and MTCM (green). Second row: Binarized spectrogram.
Third row: Raw envelope signal with some spikes. Fourth row: Filtered
final output. Fifth row: Signal quality index.

D. SPECTROGRAM ENVELOPE TRACING
Given the set of binarized spectrograms (see second row
Fig. 5 for an example of a binarized spectrogram), the goal is
to extract the maximal flow velocity in a column-by-column
(time steps) fashion. In the following, we assume that the
sampling rate is 217 Hz and that the velocity resolution is
1v = 0.29 cm/s. Our algorithm extracts the first 5 candidate
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velocities (white pixels) v[k](1), . . . , v[k](5), starting from the
maximal velocity of 152 cm/s in each column. These candi-
date velocities, starting from the highest, are subject to two
physiological sanity checks

1) The majority of the 40 pixels (≈ 12 cm/s) below
the candidate pixel (velocity) have to be white (above
threshold). This avoids mistaking isolated speckles as
signal.

2) The velocity estimate v̂[k] cannot deviate by more than
30 cm/s from the mean value of the velocity estimates
of the previous three time steps (≈ 14 ms) v̂[k −
1], v̂[k− 2], and v̂[k− 3]. This avoids isolated outliers.

If none of the 5 candidate velocities passes the sanity checks,
the velocity v̂[k] is set to the previous value v̂[k−1]. However,
if no candidate velocity fulfils the sanity checks for more than
20 consecutive time steps, the maximal candidate velocity is
taken regardless. These sanity checks are not very restrictive
and are aimed at flagging only obvious outliers. A more
stringent signal quality assessment follows in the next step.

E. SIGNAL QUALITY ASSESSMENT
Each candidate maximal flow velocity waveform, obtained
using a specific grayscale threshold γ ∈ 0, is evaluated on a
beat-by-beat basis via a signal quality assessment algorithm.
The signal quality assessment algorithm is based on thresh-
olding amplitude and duration features as well as template
matching to assess similarity between candidate beats and a
template obtained from the data. This approach is similar to
the method we first presented in [27] and to the recent signal
quality paper by the Neural Analytics Inc (Los Angeles, CA,
USA) group [28].

The first step of our signal quality assessment algorithm
is to detect beat-onsets using the algorithm from [29]. This
algorithmwas originally developed for arterial blood pressure
waveforms, but can nonetheless be used to detect beat onsets
in flow velocity waveforms by scaling the input waveform
such that its range matches the range of values expected
for arterial blood pressure (e.g., average peak value around
140 mmHg). Each beat is then subjected to the following
physiological sanity checks

1) Systolic maximum > 30 cm/s.
2) Difference between maximum and minimum flow

velocity in each beat > 20 cm/s.
3) Beat duration > 0.25 s and < 2 s.
4) 0.5 (median beat duration)< beat duration< 2 (median

beat duration).

The rationale behind conditions 1 and 2 is that for the cere-
bral vessels considered in this work the presumed insonation
angle is < 20◦. In this case, if we exclude large vessel occlu-
sions, the amplitude and pulsatility of the flow velocity needs
to be sufficiently large to be valid. Very low amplitudes and
lack of pulsatility, generally indicate signal loss (see Fig. 6).
Condition 3 is based on the assumption that the minimal heart
rate is above 30 and below 240 beats per minute, a condition
that is not overly restrictive. Condition 4 excludes excessively

FIGURE 6. Beat-by-beat signal quality assessment of the maximal blood
flow velocity waveform by template matching. The MSE is computed on
the first 75% of the template’s length (zero to black dashed bar). The
candidate beat (shown in green) has a high quality as it matches well to
the template.

short or long beats, that may indicate the presence of false
positives (multiple onsets detected in the same beat) or false
negatives (missed beats). A similar duration-based outlier
detector was used in [30] for improving their cerebral blood
flow velocity pulse-onset detector.

In the next step we compute for each candidate maximal
flow velocity waveform a beat template by taking the median
(with zero-padding of short beats) of all beats of the 1 min
segment that have not been rejected by the physiological
sanity checks described above. Then, each beat that has not
been flagged by the physiological sanity checks is assessed in
terms of the mean squared error (MSE) between the template
(computed using the candidate waveform under examination)
and the candidate beat. To account for heart rate variability,
which mainly affects the diastolic phase of a flow velocity
wavelet, the mean squared error (MSE) is only computed
on the first 75% of the template beat duration (Fig. 6). If
the normalized MSE is above 30%, the beat is flagged as
an artifact. Since in our recording setup we did not expect
large heart rate variability on 1 min segments, we omitted
any linear or non-linear (such as dynamic time warping) beat
alignment.

We define the artifact-index as the percentage of beats that
were labeled as artifacts. For each 1 min segment we then
choose the candidate flow velocity waveform with the small-
est artifact-index as our final estimate. Note that, in addition
to allowing us to select a flow velocity waveform (corre-
sponding to a specific grayscale threshold), the signal quality
assessment algorithm provides us with a measure of confi-
dence, a signal quality index (0 % - 100%) for each beat
(Fig. 5 bottom panel). The signal quality index is computed
as one minus the normalized relative MSE between each
beat and the template. Finally, the remaining step to obtain
high-quality flow velocity estimates is post-processing.

F. POST-PROCESSING OF BLOOD FLOW VELOCITY
Since rapid oscillations in the maximal flow velocity wave-
form can be attributed to noise and artifacts, the resulting
signal is filtered with a 4th-order Butterworth filter with
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a cutoff frequency fc = 16 Hz and additionally, with a
1D-median filter with a length of 3 samples (≈ 14 ms) to
remove potential outliers (Fig. 5, third and fourth panel).

G. SUMMARY
To obtain a maximal flow velocity waveform from a received
pulsed echo signal, we perform the following steps

1) Compute spectrogram from demodulated echo signal.
2) Compute a candidate threshold for binary segmentation

via Otsu’s method on an appropriately chosen segment
of the spectrogram.

3) Trace the maximum flow velocity waveform on mul-
tiple binarized spectrograms that are obtained using
different segmentation thresholds.

4) Compute the signal quality for each waveform.
5) Choose the flow velocity waveform with the highest

signal quality.
6) Perform low-pass and median filtering as a post-

processing step.

H. REAL-TIME IMPLEMENTATION OF THE ALGORITHM
The current implementation of the envelope tracing algorithm
works by splitting the recording into one-minute segments
to account for potential changes in the echo intensity over
time. However, the segment length can be reduced to, e.g., 10
s to allow a near-real-time implementation of the envelope
tracing algorithm. In addition, to reduce computational costs,
one could start with a given segmentation threshold that is
only adapted (on a segment-by-segment basis) if the signal
quality of the retrieved maximal flow velocity waveform is
below a certain threshold.

III. MATERIALS AND EVALUATION METRICS
A. HUMAN SUBJECT DATA AND STUDY PROTOCOLS
The TCD data were collected from healthy volunteers atMas-
sachusetts Institute of Technology (MIT) and from patients
in neurocritical care at Boston Medical Center (BMC). Data
collection occurred between 2016 and 2020, was approved by
theMIT and BMC Institutional ReviewBoards, and informed
consent was obtained from the subjects directly at MIT or
from the patients or their legally authorized representatives
at BMC. The healthy subject population consisted of six
subjects in the age range of 25-45 years with no known neu-
rological disorders. From these, we obtained in total 16 TCD
recordings from themiddle cerebral artery (MCA)with a total
duration of about two hours. The neurocritical care patient
population consisted of 12 patients, aged 23-74 years, pre-
senting with conditions such as traumatic brain injury (TBI),
hydrocephalus, and intraparenchymal or subarachnoid hem-
orrhage. Details of the clinical data collection are provided
in Jaishankar et al. [31]. From the neurocritical care patient
population, we included in total 16 TCD recordings from
either the MCA or the internal carotid artery (ICA) with an
aggregate duration of 2 h and 40 min.

We used the portable Philips CX-50TM ultrasound system
(Philips, Andover, MA) with a S5-1 ultrasonic transducer
with a frequency of 1.75 MHz. The spectrogram was com-
puted by a short-time Fourier transform of the demodulated
echo signal on overlapping windows with a 75% overlap. The
shift between overlapping windows was 1/217 s, resulting in
a sampling frequency of 217 Hz of the blood flow velocity
waveform. The sampled echo data was retrieved from the
internal memory of the CX-50 ultrasound system and pro-
cessed using the Image Processing ToolboxTM in MATLAB
2018a (The Mathworks, Natick, MA).

To obtain MCA cerebral blood flow velocity recordings,
the sonographer positioned the ultrasound probe over the
temporal ultrasound window and mostly targeted the M1 seg-
ment of the MCA. This approach results in a dominant blood
flow towards the probe, which is registered as a positive
flow velocity. To obtain ICA blood flow velocity record-
ings, the sonographer positioned the ultrasound probe on
the throat, pointing towards the base of the skull with an
acute angle with respect to the vessel direction. This results
in a blood flow away from the probe, and hence negative
blood flow velocity. In both cases, the ultrasound probe was
manually stabilized, and therefore small hand or head move-
ments often led to signal deterioration or even signal loss
(Fig. 1, top).

B. MANUAL SPECTROGRAM TRACING AND RATING
To obtain a quantitative assessment of the performance of
our envelope tracing algorithm, we developed a custom-made
MATLAB program for manually tracing TCD spectrograms.
In each recording, we randomly selected a spectrogram seg-
ment. If the quality of the spectrogram in that segment was
sufficient to visually detect an envelope, we manually traced
30 heart beats. Otherwise we randomly selected another seg-
ment and again assessed if it was possible to visually detect an
envelope. The metrics used for the quantitative evaluation of
our algorithm, compared to the manual traces, are described
in Section III-C.
For a qualitative assessment that does not rely on

manually-traced spectrograms we rated each recording using
the three categories (good, acceptable, and bad). We used the
following rules for categorizing each recording: An envelope
trace was seen as ‘good’ if the estimated envelope did not
deviate more than (approximately) ± 5 cm/s from the visu-
ally detectable envelope on at least 90 % of the recording
duration. An envelope was categorized as ‘acceptable’ if
the deviation was below ± 10 cm/s, and as ‘bad’ otherwise
(see Fig. 10). This coarse (and subjective) evaluation met-
ric allowed us to assess the performance of the envelope
tracing algorithm on the full duration of 4 h and 40 min of
TCD recordings.

C. ALGORITHM EVALUATION
To assess the performance of the proposed algorithm, we per-
formed a quantitative evaluation, where we compared man-
ually with algorithmically traced spectrogram envelopes. In
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addition to the comparison with manual tracings, we com-
pared our algorithm to the MTCM algorithm [32], [33].
The key idea of the MTCM is to estimate the maximal fre-
quency (=̂ velocity) by comparing the spectral power in each
frequency bin, starting from the high frequency end (noise
floor N0), to an empirically determined threshold TMTCM that
is held constant on a whole spectrogram segment and that
depends on the SNR of the spectrogram. For the MTCM,
we manually adapted this threshold to obtain a maximal
blood flow velocity waveform whose visually-assessed qual-
ity was as high as possible. Due to the human-in-the-loop,
this version of the MTCM, which we denote by MTCM++,
is superior to the classical MTCM.

1) QUANTITATIVE EVALUATION METRICS
We define the error signal

e[n] = valgo[n]− vman[n], (3)

where valgo is the estimated maximal flow velocity wave-
form, vman the manually traced maximal flow velocity, n =
1, . . . ,N the sample index, and N corresponds to the total
number of samples. The bias is defined as

me =
1
N

N∑
n=1

e[n] (4)

and the variance of the error as

σ 2
e =

1
N

N∑
n=1

(e[n]− me)2 . (5)

In addition to the absolute error, we computed the relative
error that we defined as

re =

∑N
n=1 e[n]∑N

n=1 vman[n]
. (6)

Since the peak-systolic velocity is an important quantity,
e.g., used in the computation of the pulsatility and resis-
tivity index and for the detection of vasospasms, we fur-
thermore evaluated the absolute and relative differences in
peak-systolic velocities between the manual tracing and the
algorithmically obtained peak-systolic velocities. We define
the peak difference as

1peak[k] = vpeakalgo [k]− v
peak
man [k], (7)

where vpeak[k] is the peak-systolic velocity of the k-th heart
beat. Thereby, we can define the following error metrics

m1peak =
1

#beats

#beats∑
k=1

1peak[k]. (8)

and

σ 2
1peak =

1
#beats

#beats∑
k=1

(1peak[k]− m1peak )2. (9)

and

r1peak =

∑#beats
k=1 1peak[k]∑#beats
k=1 vpeakman [k]

. (10)

Note that for being able to compare estimates of positive
flow velocities, as they occur in the MCA, with negative flow
velocities, as they occur in the ICA, we flipped the sign of the
negative flow velocities.

IV. RESULTS
In the following, we report the performance of our algorithm
in terms of the quantitative and qualitative performance met-
rics outlined above, and also provide estimates of its runtime.

A. QUANTITATIVE EVALUATION RESULTS
In each of the 32 recordings (16 recordings from healthy
patients and 16 from neurocritical care patients), we manu-
ally traced a spectrogram segment containing 30 heart beats
and computed the error metrics for our algorithm and the
MTCM++ algorithm. As the fixed parameter MTCM failed
on a large number of recordings (see Table 3), we did not
perform a quantitative evaluation for this algorithm. When
the fixed parameter MTCM fails on a recording, usually
the returned maximal flow velocity is either almost constant
and at the maximally measurable flow velocity, or if the
algorithm is not sensitive enough, around zero. Table 1 and 2
summarize the computed performance metrics for the healthy
subject population and for the neurocritical care patients,
respectively. The average over the 32 recordings had a bias
of me = −0.7 cm/s and a standard deviation of the error of
σe = 3.2 cm/s. The deviation in peak systolic velocities was
m1peak = −2.8 cm/s.

TABLE 1. Quantitative evaluation of our algorithm and the MTCM++ vs
manual tracing on 16 recordings from healthy subjects.

TABLE 2. Quantitative evaluation of our algorithm and the MTCM++ vs
manual tracing on 16 recordings from neurocritical care patients.

TABLE 3. Qualitative evaluation of all 32 recordings with automatically
traced TCD spectrograms.

Note that our algorithm is calibration-free and therefore no
manual parameter tuning was required to obtain the results
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FIGURE 7. Bland-Altman plot for estimated (with our algorithm) vs
manually-traced peak systolic velocity in 16 MCA recordings from healthy
subjects.

FIGURE 8. Bland-Altman plot for estimated (with our algorithm) vs
manually-traced peak systolic velocity in 16 MCA and ICA recordings from
neurocritical care patients. Note that the neurocritical care patients have a
wider range of peak systolic velocities compared to the healthy subjects.

in tables 1 and 2. As discussed above, for the MTCM++
in contrast, we manually adjusted the preset threshold on the
pixel intensity until (if possible) we obtained an envelope we
deemed of a high quality.

A representative spectrogram segment is shown
in Figure 9, where the manual trace is shown in blue and the
envelope obtained by the proposed algorithm in red. In this
segment the bias is me = −0.75 cm/s, the standard deviation
of the error is σe = 2.42 cm/s, and the average difference
of the systolic peak is m1peak = −5.3 cm/s. In this example,
we can see that the algorithm (slightly) underestimates the
peak systolic flow velocity compared to the manual trace.

Due to the clinical importance of the peak systolic veloc-
ity, we performed a more detailed analysis of the estima-
tion accuracy of our algorithm. For this, we compared the
peak systolic velocity estimates of our algorithm with the
manual traces consisting of 32 segments, each containing
30 beats. Figures 7 and 8 show the Bland-Altman plots for
healthy and neurocritical care patients, where each circle
denotes a single peak systolic velocity estimate. Positive
peak systolic velocities stem from MCA, whereas negative
peak systolic velocity stem from ICA measurements. Over-
all, the bias is very low and only a few beats show a sig-
nificant deviation from the manually traced peak systolic
velocities.

FIGURE 9. Comparison of manually traced (blue) and algorithmically
determined (red) maximal cerebral blood flow velocity. Note that the
peak-systolic velocity is slightly underestimated.

FIGURE 10. Maximal blood flow velocity determined with proposed (red)
and MTCM algorithm (green). Data obtained from the MCA of a healthy
subject (top), the MCA of a neurosurgical patient with elevated flow
velocity (center), and the ICA of a neurosurgical patient (bottom). For all
three data segments the visual assessment for the proposed algorithm
was ‘‘good’’, whereas for the MTCM algorithm only the center and bottom
plot are considered to have a good tracing quality, whereas the top plot
has a bad quality.

B. QUALITATIVE EVALUATION RESULTS
We visually assessed all of the 32 recordings with a total
duration of about 4h and 40 min and scored the quality of
the maximal blood flow velocity estimate of our algorithm,
the fixed parameter MTCM, and the MTCM++ algorithm.

Table 3 shows the results of this qualitative evaluation.
An example of the visual assessment is shown in Figure 10
that contains traces obtained by our algorithm (red) and from
the MTCM (green). In general, for low SNRs and SNRs
that change during one recording, the performance of the
MTCM algorithm is impaired (Fig. 10 top). Note that with
the MTCM version with a fixed parameter set, it is hardly
possible to obtain a good tracing performance on all spectro-
grams. However, when manually adapting the parameters for
each recording, we managed to obtain a good performance.
Therefore, similarly to the proposed algorithm, the MTCM
algorithm could be improved by a grid search around a sug-
gested threshold with a subsequent selection of the trace with
the highest signal quality.
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C. RUN-TIME
The current implementation of our algorithm uses five can-
didate grayscale thresholds for estimating the maximal flow
velocity. It requires around 12 s to process a 1 minute long
recording on a Macbook Pro with an iCore 7 processor,
with all algorithmic steps implemented in MATLAB without
particular attention paid to optimize the performance for
real-time execution.

V. DISCUSSION
In this work, we have presented an envelope tracing algo-
rithm for extracting maximal blood flow velocities from
TCD spectrograms. The feedback loop between the spec-
trogram tracing and the signal quality assessment leads to
an accurate estimation of the maximal flow velocity wave-
forms in different arteries, even in challenging scenarios
with varying signal intensity and low SNR. Compared to
physiology-agnostic edge detection or thresholding algo-
rithms, the proposed approach uses physiological constraints
to avoid spurious edges. The signal quality feedback loop
provides the necessary adaptiveness required for the algo-
rithm to detect maximal blood flow velocities in different
vessels and helps with handling inter- and intra-subject vari-
ability, as shown for instance in Fig. 10. A further advantage
of the current approach is that it returns a beat-by-beat
signal-quality estimate alongside the detected maximal blood
flow velocity waveform. Such a signal-quality metric is
important if the flow velocity waveform or features thereof
are to be passed to downstream processing or reasoning
modules.

Our evaluation was aimed at cerebral vessels, primarily the
MCA and ICAusing one type of ultrasound device. In a future
work, it would be interesting to evaluate the algorithm’s
performance on other arteries, such as the umbilical artery
as well as on different ultrasound machines.

From our anecdotal clinical experience, the peak systolic
velocity seems to be underestimated in various commer-
cial ultrasound systems as well as by algorithms from the
academic literature, such as the MTCM. We assume that
the main reason for the underestimation of peak systolic
velocities is due to low-pass filtering employed for enhanc-
ing robustness of the envelope detection algorithms. Our
algorithm has a systematic (but comparatively low) nega-
tive bias as well, as shown in Figures 7 and 8. This is
mainly due to the low-pass filtering (median filtering of
the spectrogram and low-pass filtering of the obtained enve-
lope). Additionally, the signal quality algorithm, being partly
based on template matching with an averaged beat, penal-
izes excessively variable waveforms and therefore might
further increase the bias to overly smooth curves and thus
rounded-off systolic peaks. Therefore, it would be worth-
while exploring additional features to be incorporated into
the signal quality assessment. For example, a measure for
the consistency and magnitude of the peak systolic velocity
could further reduce the bias in the estimated peak systolic
velocities.

FIGURE 11. This figure shows the difficulty of finding a maximal blood
flow velocity in low SNR spectrograms. Here, we can also appreciate the
mismatch between the manual (blue) and algorithmic (red) tracing. Note
that between 0.6s and 0.7s the manual tracing is arguably worse than the
algorithmic trace.

The current implementation of our algorithm is tailored to
offline processing. However, by working on a window-by-
window basis and due to the processing time being much
faster than the duration of the recording, the algorithm can
be adapted for near real-time execution. A further speed-up
can be achieved by using the segmentation threshold learned
on past waveform segments and adapt the threshold only if
the signal quality falls below some preset value.

The presented algorithm is able to recover the maximal
flow velocity quite accurately when compared to manual
tracings. It is important to note though that it is not always
easy to visually detect the maximal flow velocity and in
particular the peak-systolic velocity in a TCD spectrogram
(see Fig. 11). Significant human inter-rater variability is often
present [34], and spectral broadening as well as changes
in the insonation angle complicate the determination of the
maximal flow velocity. In addition, for guaranteeing a reliable
human gold-standard for the quantitative evaluation, we only
used segments in which it was possible to visually discern the
envelope quite clearly. This excludes very lowSNR segments,
which are of little clinical value anyways. The subjectivity in
the assessment is a limitation both for our visual assessment
and for the quantitative evaluation of the retrieved spectro-
gram envelope compared to the manual trace. This being said,
the residual errors of our algorithm seem of little clinical
significance.

A comparison of the proposed approach to other algo-
rithms in the literature is challenging. Algorithms such as [22]
employ a shape-based approach using Gamma functions that
are fit to umbilical Doppler echos. The output of the algorithm
is an ‘‘average’’ cardiac cycle from which Doppler indices
can be computed. Our goal was to obtain a sample-by-sample
envelope for different vessels and therefore a comparison
with [22] was not practical. Similarly, in [21] a supervised
approach is presented that requires a subset of the data to
be manually-traced from which a generic envelope template
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is learned. Since our goal was to have a fully unsupervised
algorithm, a quantitative comparison was not deemed rele-
vant. Nonetheless, the Kalman filter based envelope tracing
from [21] encodes a similar idea to our approach for avoiding
spurious edges, namely that the envelope trace is not allowed
to change too much from one sample to the next. We finally
opted for a comparison with the MTCM, since it is a simple
and known method that is waveform-agnostic and fully unsu-
pervised.

A recent and interesting approach to flow velocity estima-
tion worth mentioning is [35]. There, the Doppler spectrum
is assumed to be generated by a discrete number of cylindri-
cal sample volumes with a specific flow profile (e.g., lam-
inar). These assumptions yield a mathematical spectrogram
model from which the maximal flow velocity can be obtained
directly.

Irrespective of the employed algorithm, the difficulty in
finding the maximal flow velocity in Doppler spectrograms
has implications on derived indices such as the pulsatility
index and other derived quantities such as ICP [8], [9], [11].
This uncertainty in the blood flow velocity waveform and the
associated need for visual review and manual annotation of
the waveforms to flag regions of sufficiently high signal qual-
ity is one of a series of challenges that need to be overcome in
the translational effort to bring non-invasive ICP monitoring
to the bedside. One way to tackle this challenge is to equip the
flow velocity waveform with a signal quality index, such that
in the downstream computation one can exclude low-quality
segments.

Another way to increase clinical acceptance of TCD could
be provided by new approaches that improve usability and
signal quality, e.g., through electronic beamforming [36] or
through robotically-driven TCD probes that automatically
move the probe to find a positioning, where the received
echo has a high signal intensity [37]. Integrating a signal
quality assessment algorithm, such as the one proposed in this
work, could potentially help to find a good orientation of the
ultrasound probe.

VI. CONCLUSION
In this work, we have proposed an algorithm for automati-
cally tracing the maximal blood flow velocity in transcranial
Doppler spectrograms. In addition to themaximal flow veloc-
ity, the algorithm provides an assessment of the signal quality
on a beat-by-beat basis. By making both the code and the data
publicly available we hope that the present work will be a
useful resource in future experimental applications of TCD
ultrasonography.
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