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Abstract—Objective: Accurate quantification of neurodegener-
ative disease progression is an ongoing challenge that complicates
efforts to understand and treat these conditions. Clinical studies
have shown that eye movement features may serve as objec-
tive biomarkers to support diagnosis and tracking of disease
progression. Here, we demonstrate that saccade latency – an
eye movement measure of reaction time – can be measured
robustly outside of the clinical environment with a smartphone
camera. Methods: To enable tracking of saccade latency in large
cohorts of patients and control subjects, we combined a deep
convolutional neural network for gaze estimation with a model-
based approach for saccade onset determination that provides
automated signal-quality quantification and artifact rejection.
Results: Simultaneous recordings with a smartphone and a high-
speed camera resulted in negligible differences in saccade latency
distributions. Furthermore, we demonstrated that the constraint
of chinrest support can be removed when recording healthy
subjects. Repeat smartphone-based measurements of saccade
latency in eleven healthy subjects resulted in an intraclass
correlation coefficient of 0.76, showing our approach has good to
excellent test-retest reliability. Additionally, we conducted over
19,000 saccade latency measurements in 29 healthy subjects and
observed significant intra- and inter-subject variability, which
highlights the importance of individualized tracking. Lastly, we
showed that with around 65 measurements we can estimate mean
saccade latency to within less-than-10-ms precision, which takes
within four minutes with our setup. Conclusion and Significance:
By enabling repeat measurements of saccade latency and its
distribution in individual subjects, our framework opens the
possibility of quantifying patient state on a finer timescale in
a broader population than previously possible.

Index Terms—Eye tracking, convolutional neural networks,
health monitoring, saccade latency, mobile imaging

I. INTRODUCTION

Objective and accurate tracking of neurodegenerative dis-
ease progression remains an ongoing challenge. Clinical ex-
aminations are typically spaced out across intervals over which
the functional decline might be subtle, especially early in
the disease process, and consequently difficult to ascertain
using standard clinical tools. Patient assessment also relies on
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testimony from patients, family members or care-providers,
which is subjective and prone to recall bias. Blood or cere-
brospinal fluid sampling for determination of biomarker levels
is invasive, and repeat imaging studies are costly. Finally,
standard neurocognitive and neuropsychological test batteries
require a trained observer to administer and score the test,
demand significant patient time and cooperation, and can
suffer from re-test variability and methodological limitations
that may mask signs of the underlying disease progression [1]–
[3].

The lack of objective and accurate assessment tools to
quantify disease state and precisely track disease progression
not only limits routine clinical assessments but also hinders
the development and validation of novel treatment strategies.
Since the quest for disease-modifying therapies in neurodegen-
erative diseases is increasingly focusing on the early or even
prodromal stages of the disease process, the need for accurate
and precise measures of disease progression and response to
treatment has become urgent [4], [5]. It has been suggested
that laboratory-based functional assessments, especially of eye
movement patterns, may prove to be useful and informative
adjuncts to the standard neurocognitive assessment tools in
routine clinical care and clinical trials and may therefore help
address this critical need [6].

Registration and analysis of eye movement patterns have
attracted significant attention in neurophysiology, clinical
medicine and – more recently – human-computer interfacing
and gaming [7]–[10]. In the context of aiding in the differential
diagnosis and tracking of neurocognitive diseases, rapid shifts
in gaze (so-called saccades or saccadic eye movements) –
whether spontaneous, volitional, or reflexive – have been of
particular interest, especially in response to suddenly appear-
ing visual stimuli [6], [11], [12]. Such visual reaction tasks
require attention to and continual analysis and evaluation
of the environment as well as appropriate decision-making
and execution of oculomotor responses once a stimulus is
registered. This stimulus-response paradigm therefore probes
cognitive and oculomotor function, either or both of which
can be impaired in neurocognitive diseases [6]. Saccadic eye
movements also provide for a very rich set of features to
analyze. A commonly studied feature is saccade latency, which
is the time elapsed between the appearance of a visual stimulus
and the beginning of the eye movement either toward (pro-
saccade) or away from (anti-saccade) the stimulus [10]. An
increase in saccade latency has been reported in Parkinson’s
disease [13]–[15], dementia with Lewy bodies [13], Hunting-
ton’s disease [16], and Alzheimer’s disease [11], [17]–[20].
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TABLE I
CAMERA & RECORDING SPECIFICATIONS

Frame Rate Resolution ISO Pixel Size Shutter Type Cost
iPhone 6 240 fps 1,280×720 32-160 1.5 µm Rolling $200-400
Phantom v2511 500 fps 1,280×720 6,400-32,000 28 µm Global ∼$150,000

Additionally, differences in saccade latency and peak saccade
velocity between horizontal and vertical shifts in gaze have
shown to be particularly prominent in patients with progressive
supranuclear palsy [11]. The error rates and types of errors
committed in visual reaction tasks can also provide important
disease-related information [6]. In Huntington’s disease, for
example, anti-saccade error rate has been found to increase
with increased predicted (pre-Huntington’s) or actual (Hunt-
ington’s) disease burden [21].

Even though eye movement patterns provide useful quantita-
tive information about a patient’s disease state, clinical studies
of eye movement disturbances in neurodegenerative diseases
have largely been based on cohort studies with comparatively
small numbers of patients. This might, in part, be related to
the need for special eye tracking equipment and a controlled
environment within which to conduct eye-tracking studies.
Consequently, these studies require patients to visit the clinic
or laboratory to participate in the measurement sessions. An
alternative to this approach could be afforded by performing
eye movement tracking and analysis at the convenience of
the patient on consumer-grade electronic devices such as cell
phones, tablets or laptop computers with user-facing cameras.
In fact, the use of such “digital biomarkers” has recently
attracted significant attention in neurology [22]–[24].

Here, we demonstrate that measurements of saccade latency
can be made robustly using smart phone cameras. We propose
a model-based approach to saccade-onset detection that allows
for automated flagging and rejection of eye-movement traces
that might be of questionable quality. We evaluate the resulting
saccade latency measurements under a variety of environmen-
tal conditions and assess the intra- and inter-subject variability
in saccade latency in healthy subjects. Finally, we determine
the re-test variability of cell-phone based saccade latency
measurements. The work opens the possibility for broader eye-
movement measurements to be conducted on consumer-grade
devices thus enabling tracking of such digital biomarkers on
a much finer timescale (e.g. daily) than is currently possible
with laboratory-based eye-movement assessment and thereby
potentially aiding the characterization of disease progression
and quantification of patient state. A preliminary version of
this work has been reported in [25] and [26].

II. MATERIALS

A. Video recordings

Video recording of volunteers was approved by MIT’s
Committee on the Use of Humans as Experimental Subjects,
and informed consent was obtained from each participant prior
to recording. Subjects were seated centrally in front of a laptop
at a distance of about 1 m, with their chin placed comfortably
on a soft chinrest to minimize head movements. The sequence

of visual stimuli were presented on the laptop screen. A second
monitor was placed behind the subject’s head, facing and
mirroring the laptop screen. An iPhone 6 was placed centrally
between the subject and the laptop screen at a distance of
about 0.5 m from the subject and with the rear-facing (non-
selfie) camera facing the subject. The laptop position was
chosen to generate eye movements of 10◦ amplitude, and
the camera position was chosen to capture the subject’s face
and the mirrored screen during the task, thus capturing the
eye movement and the visual stimulus sequence in the same
recording. Video recordings were made in slow-motion mode,
resulting in recordings at 240 frames per second (fps) and
a resolution of 1280×720 pixels. In a subset of recordings,
we additionally and simultaneously collected reference videos
with a high-speed camera (Phantom v2511) at 500 fps and
a resolution of 1280×720 pixels (see Table I). The distance
from the high-speed camera to the subject was about 0.9 m; the
camera lenses focused on the subject’s eyes. Most recordings
were acquired under fluorescent lighting. To understand the
robustness of the recordings to realistic variations in ambient
conditions, we collected a separate set of recordings while
varying the lighting conditions with the help of LED panels,
and subjects were recorded with and without glasses.

B. Task design

We used the Psychophysics Toolbox 3 for Matlab [27]
to implement the visual fixation/stimulus task presented to
participating subjects on the laptop screen. A single saccade
task started with a fixation period in which three squares were
presented on the screen, arranged horizontally, against a black
background, a green square at the center of the laptop screen
and two white squares arranged at a horizontal distance on
either side (Fig. 1a). Subjects were asked to fix their gaze
on the green square. After 1000 ms of fixation, all three
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Fig. 1. (a) Example of the visual tracking task during a saccade-latency
measurement. The tasks consisting of a fixation period (F), a gap (G), and
the appearance of the stimulus (S). Only the final 200 ms of the fixation
period are shown. (b) The corresponding horizontal eye movement trace.
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squares disappeared. Following a 200 ms gap, the two lateral
squares reappeared in their original position, with one of them
bounded by a yellow square (the stimulus). Subjects were
tasked with moving their eyes to – and subsequently keeping
their gaze fixed on – the stimulus (Fig. 1b). After the stimulus
disappeared, subjects returned their gaze back to the centrally
located green square. This task was repeated 40 times per trial,
with a total of 20 stimuli appearing on the right and 20 on
the left in randomized order. Each recording session consisted
of three such trials conducted in close succession, resulting in
120 saccade tasks per session and taking about ten minutes to
complete (including breaks between trials).

III. METHODS

The two principal steps in determining saccade latency
are (1) eye-tracking to extract the eye position from each
frame in a video sequence, and (2) saccade-onset detection
to determine when the eyes begin to move (Fig. 2). In this
section, we discuss how each step is performed within our
signal-processing pipeline.

A. Eye tracking algorithm

Several algorithms have been proposed to estimate gaze on
portable devices [28]–[30]. Here, we first discuss our use of
iTracker [28], a convolutional neural network (CNN) designed
for gaze estimation on smartphones, for tracking the eye
position as a function of time. We then propose iTracker-face, a
subset of the iTracker neural net, for eye tracking and saccade-
onset detection.

To estimate where a user is looking on a screen, iTracker
was trained on static images taken with the front-facing
(selfie) camera of an iPhone or iPad. These images were
collected through an iOS application named GazeCapture,
which includes built-in iOS face and eye detectors. The inputs
to iTracker include a face grid that indicates the location of
the face within the image, a cropped image of the face and
cropped images of the right and left eye (Fig. 3), where the
cropped face and eyes were determined by the iOS detectors
and were resized to 224×224 pixels.

Since we did not collect our data through an iOS applica-
tion, we manually annotated six anatomical landmarks on the
first frame of each video clip: the two corners of each eye
and the two corners of the mouth. To crop each eye region,
in accordance with [31], we determined the midpoints of the
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Fig. 2. Pipeline for automated saccade-latency measurement, consisting of
eye-tracking and saccade-onset detection. The time difference between the
stimulus presentation time (blue line) and the saccade onset (red line) is the
saccade latency.
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Fig. 3. Convolutional neural network architecture used by iTracker and
iTracker-face [28]. iTracker processes the face grid and the eye and face layers
(red and blue), while iTracker-face only processes the face layers (blue). See
[28] for details.

inner and outer corners of each eye and surrounded these mid-
points with squares of width 1.5 times the distance between
the corners (Fig. 4). We also computed the centroid of the
six annotated landmarks and determined the face-crop region
likewise as the square of width 1.5 times the largest distance of
any two of the six landmarks, centered at the centroid location.
All images are fed into iTracker at a resolution of 224×224
pixels, which means they undergo resizing from the original
resolution. The eye crops are upsampled, while the face crop
is downsampled with an anti-alias filter, using the imresize

function in Matlab. We then apply iTracker to each frame in
the video sequence, and the x-coordinate of the estimated gaze
location over time is taken as the horizontal eye-movement
trace.

While iTracker is designed to operate on video sequences
of 30 fps, a temporal resolution above 50 fps is required for
clinical applications [32]. Thus for this work, we used the
rear-facing camera of the phone in slow-motion mode, which
results in a frame rate of 240 fps and corresponding temporal
resolution of approximately 4 ms. However, the higher frame
rate also results in poorer image quality compared to 30 fps
due to the reduction in exposure time. Recordings taken at 240

Fig. 4. Manual eye crops and face crops for input to iTracker. The corners
of the eyes and the mouth are manually determined on the first frame. The
bounding boxes show the regions of eye and face crops derived from these
fiducial markers.
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fps are dimmer than recordings taken at 30 fps. (This is not
an issue with high-end image sensors such as those found in
the Phantom high-speed camera. Phantom v2511 for example
supports larger ISO (see Table I). Although there may be a
trade-off between ISO and digital noise, Phantom v2511 also
has a larger pixel size, which allows Phantom to produce less-
noisier images even at higher ISO.) We discovered that in
some challenging scenarios (e.g. the illumination was low or
the subject was wearing glasses), the variations in the output
of iTracker can be so large that the saccade onset becomes
ambiguous.

To further understand the source of the variations, we tested
the output of iTracker when fixing the face grid input and two
of the other three inputs (left eye crop, right eye crop, and
face crop) to be the first frame of the video. We discovered
that the variations in the output will be the smallest when we
only changed the input to the face layers. Since the receptive
field in the cropped eye only contains parts of the eye, one
potential explanation for the observation could be that the eye
layers may be trained to learn detailed features in the eyes to
fine-tune the gaze estimation. On the contrary, the receptive
field in the cropped face may contain a full eye. That is, the
face layers may be trained to learn more global features in
the eyes. When the image becomes blurrier, the detailed eye
features will be replaced by noise, which causes the eye layers
more sensitive to noise than the face layers.

To address the comparatively low image quality at high
frame rate, we propose the iTracker-face algorithm, for which
we only use the face-related convolutional layers of iTracker
(Fig. 3 blue layers). Although this choice does degrade the
accuracy of the gaze estimation as discussed in [28], our
objective is to determine if the gaze changes. Fig. 5 shows
a sample eye-position trace using the iTracker and iTracker-
face algorithms. In our application, iTracker-face generally has
higher signal-to-noise ratio than iTracker.

B. Modeling horizontal eye-movement traces

To calculate saccade latency, it is necessary to determine the
onset of the eye movement toward the target. In prior work,
the saccade onset has commonly been defined as an increase
in eye velocity above a predefined threshold [17], [32], such
as 30 ◦/s, where the velocity is commonly determined through
numerical differentiation and subsequent filtering of the raw
eye-position tracing [33]. Such saccade-onset determination
requires accurate measurement of gaze and is prone to signif-
icant error at low sampling rates [34].
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Fig. 5. The same sample eye-movement trace from (a) iTracker and (b)
iTracker-face.
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Fig. 6. Eye position as estimated by the iTracker-face algorithm (gray) and
hyperbolic tangent fit (black). The dashed line at 0 s indicates the moment
of stimulus presentation. The saccade onset is determined by an increase in
saccade amplitude above 3% of the target saccade amplitude.

Here, we instead propose to model the eye-position trace
during a saccade task as a hyperbolic tangent of the form

x̃(t) = A+B · tanh
(
t− C

D

)
and fit the model to the the eye-position tracing from 100
ms before to 500 ms after the stimulus presentation (Fig. 6).
The fitting was performed using the nonlinear least-squares
solver lsqcurvefit in Matlab to estimate the model pa-
rameters A,B,C,D. Using these optimal model parameters,
we determine the saccade onset as the time when the best-fit
solution exceeds 3% of the maximal saccade amplitude, which
is independent of the velocity of the saccade.

In addition to generating well-behaved velocity tracings, this
model-based approach has the benefit of providing a goodness-
of-fit metric on the basis of which the reliability of saccade
tracings can be evaluated in an automated manner, as the
normalized root-mean-squared error (NRMSE) between the
model fit and the eye-position trace quantifies the residual
discrepancy between the two. Here, the normalization was
done to the saccade amplitude (10◦ in our experiments).
Measurements contaminated by excessive noise, artifact, or
eye movements in the wrong direction typically result in a
high NRMSE value while reliable measurements result in a
low NRMSE. Thresholding the NRMSE allows for automated
rejection of recordings in which the saccade onsets might have
been erroneously detected or the measurements are subject
to excessive variability, noise or artifact. After evaluating the
sensitivity and specificity of saccadic eye-movement traces
across a range of candidate NRMSE thresholds, we selected
the NRMSE threshold and included in our analysis traces for
which the optimal model fit resulted in a NRMSE<0.1 (see
Section IV-B for more details).

IV. ALGORITHM EVALUATIONS

A. Robustness of eye tracking algorithms

To determine the robustness of iTracker and iTracker-face
under a variety of environmental conditions that may be
encountered outside the well-controlled clinical setting for
eye-movement measurements, we compared the performance
of the algorithms on video sequences of subjects with and
without glasses and under various ambient lighting conditions.
Two illumination-adjustable LED panel lights were used to
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vary the illumination during the recording sessions. In total,
four distinct lighting conditions were tested: (1) room light
switched on in addition to the panel lights set to high (278
Lux); (2) room light switched on without additional lighting
support from the LED panels (220 Lux); (3) room light
switched off and the panel lights set to medium (54 Lux); and
(4) room lights switched off and the panel lights set to low (26
Lux). Illuminance was measured at the participant’s face using
an LT40 LED Light Meter (Extech Instruments). Figure 7
shows how the lighting conditions affect image brightness.
Five subjects contributed 120 saccade tasks under each of the
four lighting conditions with and without glasses, for a total
of eight test conditions per subject.

The video sequences were processed with both iTracker and
iTracker-face, and the 9,600 resultant eye-movement traces
were each reviewed by two annotators. Each annotator in-
dependently determined if a trace represented a horizontal
saccade movement and had sufficiently high signal-to-noise
to allow for credible saccade-onset determination. Traces
that met these criteria were labeled ‘good’; all other traces
were labeled ‘bad’. Traces labelled as ‘bad’ were typically
interrupted by blinks, initially directed toward the opposite
direction of stimulus presentation, or had a low signal-to-noise
ratio. To assess the annotator agreement, we computed both
the accuracy (fraction of annotations in which both annotators
agreed) and Cohen’s kappa coefficient (κ). The algorithm with
the highest fraction of ‘good’ saccade traces, as judged by both
annotators, across the different environmental conditions was
deemed the more robust algorithm.

Figure 8 reports the inter-rater annotation accuracy, broken
down by ‘agreed good’ and ‘agreed bad’, for both algorithms
and each of the eight environmental conditions tested. The
average annotation accuracy was 94.1% for eye-movement
traces generated by iTracker-face and 86.8% for iTracker,
with corresponding Cohen’s κ values of 0.802 and 0.730,
respectively. These results indicate excellent inter-rater agree-
ment for the overall annotation task, which means that their
judgment can be used as a benchmark. Their annotations
also reveal that important trends exist between algorithms and
across environmental conditions. The inter-rater agreement is
lower when participants wear glasses and tends to decline with
decreasing illuminance. For example, at the lowest illuminance
level (26 Lux) and with participants wearing glasses, the
annotators agreed in their label of ‘good’ in over 40% of the
traces generated by iTracker-face. In contrast, their agreement
of what constitutes a good saccade trace was less than 8% of

278 Lux 220 Lux 54 Lux 26 Lux

Fig. 7. A sample frame from each video taken under four distinct lighting
conditions. From left to right, the pictures are arranged from the highest
illuminance (278 Lux) to the lowest (26 Lux).

the traces generated by iTracker. Obviously poor illumination
conditions result in image sequences with lower contrast
which makes it harder to detect eye features and subtle eye
movements. A closer inspection of the video sequences also
revealed that glasses, especially those with dark rims, tend to
cast shadows that can obscure the eye regions. Additionally,
some glasses have lenses with high reflectivity that make the
eyes even less visible and therefore difficult to track.

Across all eight conditions tested, the average fraction of
traces judged as good by both annotators was consistently
and significantly higher for traces generated by iTracker-
face (78.9%) than for those generated by iTracker (50.7%).
We conclude from this analysis that across all environmental
conditions tested, iTracker-face is the more robust algorithm
of the two and therefore formed the basis of all subsequent
results reported here.

B. Automation of saccade-onset detection

Annotation of the 9,600 eye-movement traces took each
annotator about 12 hours to complete. Since our goal is to
leverage smartphones to make eye-movement recordings and
analyses widely available and ubiquitous, visual inspection of
individual tracings is not an option. Having identified iTracker-
face as the more robust of the two algorithms for iPhone-
based eye-movement tracking, we applied the tanh model to
the resultant eye-position traces to estimate saccade onset. To
evaluate the usefulness of the NRMSE as an automated metric
to flag bad saccades, we used the expert-annotator labels as
the ground truth for all iTracker-face derived traces described
in the previous section and swept the NRMSE threshold
to generate a receiver-operating characteristic (ROC) curve.
By separately considering each annotator’s judgment as the
ground truth, we obtained two ROC curves (Fig. 9), one for
each annotator, and generated associated 95% confidence in-
tervals (CI) for the true positive rate by stratified bootstrapping
over 2,000 replicates at fixed false positive rate [35]. The
two resultant ROCs tracked each other closely and achieved
an area under the curve (AUC) of 0.923 (95% CI: 0.913 –
0.932) and 0.933 (95% CI: 0.923 – 0.943), respectively. If we
consider all traces with a NRMSE<0.1 as ‘good’ saccades,
we achieve average true positive rates of 0.87 and 0.86 and
average false positive rates of 0.20 and 0.16 for the first and
second annotator, respectively. In the following, we selected
an NRMSE of 0.1 as the threshold.

C. Comparison across cameras

To verify that recordings from consumer-grade cameras can
lead to similar saccade-latency statistics as those obtained
from recordings of high-end, research-grade cameras, we
took simultaneous recordings on four subjects using a low-
cost, consumer-grade camera (iPhone 6) and a research-grade
camera (Phantom v2511, see Table I for their specifications).

Fig. 10 shows the resulting saccade-latency distributions
obtained using the iTracker-face algorithm and the model-
based onset detection. The inclusion of the high-speed camera
in the recording set-up resulted in increased distances between
the subject and the cameras, as well as between the subject
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Fig. 9. Performance of model-based fitting in classifying saccades. The
adjudications of two annotators were taken as the ground truth, with the solid
lines being the corresponding mean ROC curves. The shaded areas indicate
the confidence intervals for the true positive rate. The parentheses mark the
95% confidence intervals for the areas under the curves.

and the laptop’s screen. The increased distances result in
a smaller horizontal eye movement, which in turn produce
slightly noisier, but acceptable, eye movement traces. Fig. 10
demonstrates that the distributions from both cameras are
consistent, with negligible differences in the mean saccade-
latency values and associated standard deviations between the
two recording systems.

D. Face-crop automation

To fully automate the signal-processing pipeline of Fig. 2,
we replaced the manual face annotation and cropping (Fig. 4)
with an automated face-detection step. As mentioned in Sec-
tion II, with the head supported by the chinrest, we can expect
the position of the face to remain relatively stable throughout
a sequence of saccade tasks and the manually determined face

region to remain valid throughout the subsequent frames of a
video recording. To automate the face-region determination,
we used the Viola-Jones face detector [36] and evaluated
the changes in the estimated saccade latencies after this
automation on 158 sessions of recordings. The mean absolute
differences in the mean per-session saccade latencies with
an NRMSE<0.1 was 1.10 ms with an associated standard
deviation of 1.24 ms (Fig. 11). We therefore conclude that
automating the face-detection step does not materially affect
the saccade-latency determination in normal subjects. This
result may be understood by considering that the convolutional
layers in iTracker are trained to properly adjust gaze estimation
under translation and scaling differences in the cropped face.
As a result, the shape of the resulting eye-movement traces are
hardly changed given slight differences in the cropped regions
of the face.

E. Chinrest dependence

Ideally, we would like to enable eye-movement capture and
analysis without the need for restraining the head. Without
the chinrest in place, the assumption of limited head move-
ment throughout the (approximately) two-minute 40-saccade
sequence is bound to be violated. However, the assumption
might still be reasonable over the course of a single saccadic
eye movement, of which we typically analyze 600 ms (from
100 ms before till 500 ms after stimulus presentation). To test
this hypothesis, we conducted two sessions of video recordings
in four subjects each with and without the participants’ heads
resting on the chinrest (16 sessions in total). We applied the
Viola-Jones face detector to the first frame of each individual
saccade tracing and used the detected face region from the first
frame and applied it to every subsequent frame. If there had
been any significant head movements within a single saccade
trial, we would have expected the tanh model to no longer
attain low NRMSE fits. When the Viola-Jones face detector
was applied to iTracker-face derived eye-movement traces on
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Fig. 10. Saccade-latency distributions from four subjects obtained from video recordings using (a) the iPhone 6 and (b) a Phantom v2511 high-speed camera.
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Fig. 11. The absolute difference in mean saccade latencies between face
crop based on manual face annotation and automated face detection using the
Viola-Jones algorithm [36].

recordings obtained with and without chinrest, most of the
traces have comparable signal-to-noise (Fig. 12). Additionally,
we performed a formal analysis of variance (ANOVA) test to
assess whether a significant difference existed between mean
saccade latencies measured with and without chinrest. The null
hypothesis of a significant difference was rejected (p = 0.59).
We therefore conclude that in healthy volunteers, the chinrest
is not essential to obtaining recordings of sufficient quality for
saccade-onset detection and saccade-latency determination.

The selection of iTracker-face to generate the eye-movement
tracings, the NRMSE threshold value of 0.1 to select traces
for inclusion in our analysis, and the Viola-Jones algorithm
for automated face detection on the first frame of each saccade
task video sequence completes the automation of the saccade-
latency determination pipeline of Fig. 2. In the next section,
we apply this pipeline to determine the intra- and inter-subject
variability in saccade-latency measurements obtained from
video sequences of healthy subjects, and explore the statistical
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Fig. 12. Two examples of saccadic eye-movement traces in the same subject.
(a) Recording with chinrest, and (b) recording without chinrest. They have a
comparable signal-to-noise level.

modeling of the saccade-latency distributions.

V. DATA ANALYSIS

A. Saccade-latency determination in healthy individuals

We recorded 19,200 saccadic eye movements across 160
experimental sessions in 29 healthy subjects (20 males, 9
females; median age: 27 years; age range: 22–64 years),
including five or more repeat recording sessions in a subset
of eleven subjects. In two recording sessions, the Viola-Jones
algorithm failed to detect the face of the subject, so the results
presented here are based on 158 experimental sessions in 29
subjects.

Applying the NRMSE<0.1 criterion to accept saccadic
eye movements for analysis resulted in an average retention
rate of 82.3% (100 of the 120 saccadic eye movements per
experiment). Consistent with prior work [17], we further
excluded from our analysis saccade latencies of 80 ms or
less. This censoring excludes anticipatory eye movements but
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also removes possible express saccades [10], [37]. With this
additional exclusion criterion in place, the average fraction
of good saccades per recording session was 77% with an
associated standard deviation of ±19% (see Fig. 13). Of the
17.7% of eye-movement recordings rejected from analysis
due to NRMSE≥0.1, 27.1% were initiated into the wrong
direction and represent an error rate that by itself might
carry pathognomonic information [6]. The remaining 72.9% of
the rejected eye movement had generally low signal-to-noise.
Thus, overall, only about 13% of all saccadic eye movements
were rejected because of excessive noise.

When we aggregated the saccade latency measurements
greater than 80 ms and NRMSE<0.1 for each subject, the
mean latencies across the 29 subjects ranged from 120 ms
to 290 ms (Fig. 14). While it is common practice in clinical
studies to only report the population mean or median sac-
cade latency, such aggregation results in loss of information
encoded in each subject’s full saccade latency distribution.

Fig. 15 shows normalized saccade-latency distributions for
five subjects, selected to illustrate the range of intra- and inter-
subject variation among our study cohort. The distributions
show variable degrees dispersion and skewness, with some
subjects having a significant fraction of latencies above 200
ms.

It has been suggested that reaction times follow log-normal
distributions [38]. We tested this hypothesis on our recordings
by fitting a log-normal distribution to the saccade latency
distributions of the individual recording sessions, and also
to the saccade latency distribution of each subject for which
we aggregated each subject’s measurements across recording
sessions. The log-normal distributions were truncated at 80
ms to reflect the censoring we imposed on the minimum
saccade latency. The Kolmogorov-Smirnov test was used with
the significance level set to 0.05 to test the null hypothesis
that the saccade-latency distributions can be described by
a truncated log-normal distribution. Of the 158 individual
saccade-latency distributions (one for each recording session)
across all subjects, 155 (or 98.1%) distributions were not
significantly different from a log-normal distribution (p<0.05).
When the data from across different recordings sessions were
aggregated into a single distribution for each subject, 26 out
of the 29 (89.7%) distributions were not significantly different
from a log-normal distribution (p<0.05).

B. Test-retest reliability

If the subject condition is stable (healthy subjects, for
example), we want our saccade-latency measurement to be
consistent across sessions. To assess the test-retest reliability of
our approach to saccade-latency determination, we computed
the intraclass correlation coefficient (ICC) of the per-session
mean saccade latency in eleven subjects that participated in
at least five repeat recording sessions. As in the previous
section, individual saccadic eye movements were included in
the analysis if the associated NRMSE<0.1 and the measured
saccade latency exceeded 80 ms.

As suggested in [39], we used a repeated-measure, two-
way ANOVA approach in which subject identity and session

NRMSE ≥ 0.1

NRMSE < 0.1

Wrong
Direction

Others

Latency
≤ 80 ms

Good 
Saccades

17.7%

82.3%

27.1%

72.9%
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93.9%

(± 18.0%) 

(± 5.1%)

(± 4.1%)

(± 18.7%) 

: 4.8%

: 77.3%

: 5.0%

: 12.9%(± 18.3%)
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Fig. 13. Breakdown of over 19,000 saccade measurements by saccades ini-
tiated into the wrong direction, noisy saccades, potentially predictive/express
saccades, and good saccades.
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Fig. 14. Distribution of the mean saccade latencies from 29 healthy individ-
uals, including one subject whose mean saccade latency is 290 ms.

number were used as categorical variables, and the outcome
variable was the mean (per-session) saccade latency. The effect
of repeat experimental session turned out to be non-significant
(p=0.78), suggesting that no significant trend existed across
sessions that ought to be accounted for. Using the psych library
in R [40], we computed the ICC (ICC 3,1 in the Shrout and
Fleiss [41] convention) of the mean saccade latency for each of
the five sessions in the eleven subjects. The resultant ICC value
was 0.76 (95% CI: 0.55-0.92), generally indicating good [42]
to excellent [43] test-retest reliability.

To put this ICC value into further context, it is informative
to compare it to the values reported in the literature for
pro-saccade tests using specialized eye-tracking equipment.
Using the Eyetrac Model 210 (ASL, Waltham, MA, USA),
Roy-Byrne et al. [44] report ICC values between 0.61 and
0.75 for mean latency for a visually guided saccade task in
healthy subjects. Blekher and co-workers [45] likewise used
an infrared illumination based eye-tracking system (EyelinkII,
SR Research Ltd., Ontario, Canada) in a case-control study
of subjects at risk of Huntington’s disease. For the control
arm of the study, the authors report an ICC of 0.71 (95% CI:
0.55-0.97) for a visually guided gap pro-saccades task. The
test-retest reliability of our approach to saccade-latency deter-
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Fig. 15. Saccade latency distributions for five healthy individuals. µ is the sample mean, σ is the associated sample standard deviation, and n is the total
number of observations. Saccade latencies below 80 ms were censored. The estimated log-normal probability density functions are shown in red.

mination using a consumer-grade camera therefore compares
very favorably to the reliability reported using specialized eye-
tracking equipment.

C. Sample-size considerations

We initially designed our experimental session, consisting
of three consecutive 40-saccade trials, on the basis of a trade-
off between session duration and number of saccade latency
measurements acquired. Each 40-saccade trial takes about two
minutes to perform. Each experimental session takes between
six and ten minutes, depending on how much time a subject
would like to take between consecutive trials. Assuming that
the saccade latency of healthy subjects is sampled from static
underlying distributions, like the ones in Fig. 15 for example,
we can conduct a bootstrapping exercise to determine how
many individual saccade latency measurements ought to be
taken per session to obtain a reasonably accurate estimate
of mean saccade latency. We conducted such bootstrapping
exercise on the aggregated saccade latency distributions in
each of the ten subjects for which we had at least ten recording
sessions. Fig. 16 shows a representative example in which the
mean saccade latency and associated 95% confidence interval
were determined as a function of number of samples drawn
from the subject’s full saccade latency distribution.

On average, single experimental session with about 50 good
saccadic eye movement measurements allows for accurate and
precise (to within less than 10 ms in 95% of the cases)
determination of mean saccade latency. Such precision may
be required to differentiate normal saccade latency from the
increased latencies reported in Alzheimer’s disease [32], for
example. Taking into account our result that on average only
about 77% of the tracking tasks result in good saccadic eye
movement measurements, we arrive at around 65 individual
tracking tasks to include in a single experimental session, or
about half of the number of saccadic eye movements currently
included in our session design.

Reducing the number of visual tracking tasks per session
to 65 also reduces the total recording length per session
to slightly more than three minutes, which is less than the
average length of a typical Youtube video [46]. This recording
length is not an onerous imposition on a subject’s time and
is eminently compatible with subjects providing one or two

such recordings per day thus aiding our goal of bringing high-
accuracy determination and longitudinal tracking of saccade
latency to a broad patient population through the use of
smartphone technology.

For disease tracking, another consideration is how many
daily recordings should be aggregated to balance averaging
of random variations with detecting neurocognitive decline.
Among the dementias, for example, the prion diseases have
one of the fastest rates of decline, with the timespan from ini-
tial disease diagnosis to death sometimes only covering a few
months to a year [47]. Aggregating seven consecutive daily
recordings of 65 saccade measurements each, for example,
and advancing the averaging window one day at a time in
a sliding manner, would result in around 350 good saccade
measurements to determine a personalized saccade latency
distribution while maintaining a temporal resolution that would
allow for disease tracking of even the fastest neurodegenerative
diseases. Longer averaging times can be considered for more
slowly progressing neurodegenerative diseases to allow for
more averaging of day-to-day variation in eye movement
features.
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Fig. 16. Bootstrap determination of mean saccade latency (solid black line)
and associated 95% CI of the mean (dashed lines) as a function of number of
samples drawn from a subject’s full saccade latency distribution. The ground
truth mean saccade latency is shown in red. The mean and 95% CI at each
sample number are based on 4,000 bootstrap realizations.
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VI. DISCUSSION

The successful execution of an eye movement relies
on a complex interplay of cognitive and motor function.
Neurodegenerative diseases affect the neural circuits
responsible for these functions, altering several eye movement
features during neurocognitive decline. In this work, we
developed and validated an approach for assessing one such
feature, saccade latency, without the need for specialized
equipment (such as infrared illumination, chinrest and
research-grade cameras) or specific environmental conditions.
This approach enables measurement and analysis of saccade
latency outside of the clinical environment, hence, paving the
way for large-scale data collection.

Method development

Several technological challenges needed to be overcome
to allow for repeat saccade latency measurements outside a
specialized clinical environment. Among these technological
challenges were the reliability on infrared (IR) light to
estimate the position of the eye and the use of research-grade
cameras that yield distinct images of the eyes. Here, we
demonstrated the feasibility of deriving saccade latency from
consumer-grade cameras, such as smartphones, along with
a model-based approach to determining the onset of the
saccade that provides a metric for automated rejection of
eye-movement traces of poor quality. To extract the position
of the eye from each frame in a video sequence, we proposed
iTracker-face, a modified version of a deep convolutional
neural network for gaze estimation on smartphones that does
not rely on IR illumination. In our application, iTracker-face
is more robust to lower image quality than iTracker, providing
eye-movement traces with a higher signal-to-noise ratio. Once
the eye-movement traces are extracted with iTracker-face,
our eye movement model is fitted to the individual traces
to determine the onset of the eye movement toward the
target. This model-based approach has the added benefit of
providing a goodness-of-fit metric that allows for automated
rejection of unreliable data, an instrumental contribution
toward making saccade latency determination broadly
available as large cohorts of patients and control subjects
start recording saccadic eye movements on a continuous basis.

Method evaluation

Because the environmental conditions outside of a typical
clinical setting are variable, the evaluation of the robustness
of our eye-tracking algorithm is paramount and strengthens
our ability to measure saccade latency in complex real-world
scenarios. Our robustness evaluation shows that iTracker-face
was consistently and significantly more robust than iTracker
across all testing conditions, as ascertained by two annotators
that manually reviewed 9,600 eye-movement traces. Because
the agreement between annotators was high (as given by the
accuracy and Cohen’s kappa coefficient), their annotations
were used to determine an optimal threshold value for the
NRMSE that automatically eliminates eye-movement traces

that provide unreliable saccade latency estimates. Our evalua-
tion of the sensitivity and specificity of this approach suggests
very high sensitivity and specificity for automated signal
quality determination compared against human annotators, and
in a variety of environmental conditions that are expected to
be encountered in everyday recordings.

One important contribution to this field is our demonstrated
ability to obtain essentially the same recording quality with
and without chinrest support during the video recordings. A
formal ANOVA test confirmed that there are no significant
differences between saccade latencies measured with and
without a chinrest. The removal of the chinrest further
enhances the flexibility of our system and eliminates the
need for specialized equipment to measure saccade latency.
While this result might hold more generally for healthy
control subjects, further image processing techniques might
be required for certain neurodegenerative diseases, such as
Parkinson’s disease, that are known to lead to tremors. Our
decision to include the Viola-Jones face detector to our
signal-processing pipeline might help mitigate this effect, but
this remains to be seen. Finally, we evaluated the test-retest
reliability of our proposed approach to determining saccade
latency and compared it to the reliability reported using
specialized eye-tracking equipment, showing that our system
achieves comparable results. A high reliability demonstrates
that our low-cost approach to saccade-latency determination
yields consistent results over time in healthy subjects – a
desired attribute for a system built to track the progression of
neurodegenerative diseases.

Intra- and inter-subject variability

In order to use saccade latency to track neurodegenerative
disease progression, it is important to understand the intra-
and inter-subject variability among healthy subjects to put into
context the changes seen in patients with neurodegenerative
disease. In our work, we measured more than 19,200 saccade
latencies in 29 subjects (Fig. 14), a significantly larger number
compared to the values reported in clinical studies, ranging
from 8 – 30 saccade latencies [11], [18], [32], [48]. These
recordings were enabled by the accessible nature of our mea-
surement system that allows for 120 saccade measurements in
less than ten minutes. Considering the criteria to reject certain
saccade latencies, we are still able to retain, on average, a
sizable amount (77%) of data per session across subjects. With
this amount of data, we observed that the intra- and inter-
subject variability in saccade latency are quite substantial,
with mean saccade latencies ranging from 120 ms to 290
ms (Fig. 14) and standard deviations from 26 ms to 52 ms
(Fig. 15).

The rich information regarding the distinctive shape and
parameters of the individual distributions is lost when saccade
latency values are pooled. As seen in Fig. 15, some individuals
have a tendency to make more saccades with shorter latencies
and others to make more saccades with longer latencies.
In combining all the data into a single distribution, these
individual characteristics – that have been linked to specific
brain pathologies [49], [50] – are lost. Saccade latency intra-
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subject variability is also lost when data is pooled. If instead
the information regarding this variability were preserved, it
could be used as a feature to assess the cognitive state of a
subject. For example, some studies suggest that intra-subject
variability is larger in some conditions compared to normal
subjects [51], [52]. Our accessible, low-cost measurement
system enables widespread data collection and hence avoids
having to combine data from different subjects, allowing us to
preserve the distinctive information in each individual saccade
latency distribution (Fig. 15).

In addition to the large intra- and inter-subject variability, we
observed that the saccade latency distribution of the majority
of the subjects may be modeled as a log-normal distribution.
This observation is consistent with [53], in which neural
mechanisms are discussed that might give rise to log-normally
distributed reaction times. It might therefore be sufficient
to characterize individual saccade-latency distributions using
the two parameters of a log-normal distribution (log−µ and
log−σ) and analyze how these parameters change through
time. Lastly, we performed a bootstrapping experiment to de-
termine what is the minimum number of saccade latencies that
are needed to obtain a reasonable estimate of mean saccade
latency and discovered that around 65 measurements allow
us to estimate the mean saccade latency with a within-10-ms
precision. This suggests that we can minimize the recording
time in a data collection session to about four minutes and
still have sufficient precision to distinguish between healthy
subjects and patients. Four minutes per day is a negligible
amount of time, which we believe will incentivize frequent
measurements and enable longitudinal tracking of saccade
latency.

For disease tracking, another consideration is how many
recordings should be aggregated to balance averaging of
random variations with detecting neurocognitive decline.
Unfortunately, there are few studies that track the longitudinal
changes in saccade latency among patients [16], [54],
especially within the same cohort. Because the data in
these studies was collected in clinical environments and
the analyses usually involved manual removal of outliers,
longitudinal measurements are sparse (typically with a ¿=
6-month interval), which limits the types of diseases they
can track. For example, among the dementias, the prion
diseases have one of the fastest rates of decline, with the
timespan from initial disease diagnosis to death sometimes
only covering a few months to a year [47]. Current methods
cannot render a sufficiently timely assessment on patient
state. With our approach, however, around 350 good saccades
can be measured over a week with a less-than-4-minute
recording each day. These saccades may provide an adequate
characterization of a personalized saccade latency distribution.
By analyzing how this distribution changes over weeks, we
may be able to track the progression of prion diseases.
Longer averaging times can be considered for more slowly
progressing neurodegenerative diseases to allow for more
averaging of day-to-day variation in eye movement features.

Limitations and future work

The limitations of this work include the fact that our current
recording setup requires a laptop that shows the visual task and
an additional display to calculate saccade latency. Currently,
we are implementing the visual task on the iPhone itself,
therefore minimizing the required equipment to this single
device and reducing saccade latency delays introduced by
the two-display set-up. For patient privacy reasons, our long-
term goal is to perform all the data analysis directly on the
iPhone, which requires us to build an energy-efficient version
of iTracker-face that runs smoothly on devices that are power
and memory constrained.

Another venue of future exploration is our ability to measure
a richer set of ocular movements in addition to saccade
latency, such as the number of incorrect eye movements in
a recording session and the peak velocity of a saccade. Both
of these have been proven to be significantly different between
healthy subjects and patients afflicted with neurodegenerative
diseases [6]. Incorporating these measurements into our system
will enhance our ability to track neurocognitive decline.

VII. CONCLUSION

Our work here presents a method to measure saccade
latency outside of the clinical environment using a consumer-
grade camera. A thorough algorithm evaluation showed that
iTracker-face, along with the tanh model for saccade-onset
determination, is robust to varying recording conditions, al-
lows for automated outlier rejection, and produces saccade
latency distributions that are very similar to those obtained
from a high-end, high-speed reference camera. Furthermore,
our implementation of the tanh model allows for automated
rejection of bad saccades and therefore enables efficient large-
scale data analysis. Because of this efficiency, we collected
over 19,000 saccade latency measurements across 29 healthy
volunteers and observed that their saccade-latency distributions
have distinctive shapes, with different means and standard
deviations. A deeper understanding of these differences is
essential to put into perspective the saccade-latency changes
seen in patients with neurocognitive disease. An evaluation
of the test-retest reliability of our system showed that our
approach is capable of determining consistent saccade latency
values over time in healthy subjects. These contributions pave
the way to expanding saccade latency measurements to a broad
population for tracking of neurologic and neurodegenerative
disease progression.
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