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Abstract—Objective: Accurate quantification of neurodegener-
ative disease progression is an ongoing challenge that complicates
efforts to understand and treat these conditions. Clinical studies
have shown that eye movement features may serve as objec-
tive biomarkers to support diagnosis and tracking of disease
progression. Here, we demonstrate that saccade latency – an
eye movement measure of reaction time – can be measured
robustly outside of the clinical environment with a smartphone
camera. Methods: To enable tracking of saccade latency in large
cohorts of patients and control subjects, we combined a deep
convolutional neural network for gaze estimation with a model-
based approach for saccade onset determination that provides
automated signal-quality quantification and artifact rejection.
Results: Simultaneous recordings with a smartphone and a high-
speed camera resulted in negligible differences in saccade latency
distributions. Furthermore, we demonstrated that the constraint
of chinrest support can be removed when recording healthy
subjects. Repeat smartphone-based measurements of saccade
latency in eleven healthy subjects resulted in an intraclass
correlation coefficient of 0.76, showing our approach has good to
excellent test-retest reliability. Additionally, we conducted over
19,000 saccade latency measurements in 29 healthy subjects and
observed significant intra- and inter-subject variability, which
highlights the importance of individualized tracking. Lastly, we
showed that with around 65 measurements we can estimate mean
saccade latency to within less-than-10-ms precision, which takes
within four minutes with our setup. Conclusion and Significance:
By enabling repeat measurements of saccade latency and its
distribution in individual subjects, our framework opens the
possibility of quantifying patient state on a finer timescale in
a broader population than previously possible.

Index Terms—Eye tracking, convolutional neural networks,
health monitoring, saccade latency, mobile imaging

I. INTRODUCTION

Objective and accurate tracking of neurodegenerative dis-
ease progression remains an ongoing challenge. Clinical ex-
aminations are typically spaced out across intervals over which
the functional decline might be subtle, especially early in
the disease process, and consequently difficult to ascertain
using standard clinical tools. Patient assessment also relies on
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testimony from patients, family members or care-providers,
which is subjective and prone to recall bias. Blood or cere-
brospinal fluid sampling for determination of biomarker levels
is invasive, and repeat imaging studies are costly. Finally,
standard neurocognitive and neuropsychological test batteries
require a trained observer to administer and score the test,
demand significant patient time and cooperation, and can
suffer from re-test variability and methodological limitations
that may mask signs of the underlying disease progression [1]–
[3].

The lack of objective and accurate assessment tools to
quantify disease state and precisely track disease progression
not only limits routine clinical assessments but also hinders
the development and validation of novel treatment strategies.
Since the quest for disease-modifying therapies in neurodegen-
erative diseases is increasingly focusing on the early or even
prodromal stages of the disease process, the need for accurate
and precise measures of disease progression and response to
treatment has become urgent [4], [5]. It has been suggested
that laboratory-based functional assessments, especially of eye
movement patterns, may prove to be useful and informative
adjuncts to the standard neurocognitive assessment tools in
routine clinical care and clinical trials and may therefore help
address this critical need [6].

Registration and analysis of eye movement patterns have
attracted significant attention in neurophysiology, clinical
medicine and – more recently – human-computer interfacing
and gaming [7]–[10]. In the context of aiding in the differential
diagnosis and tracking of neurocognitive diseases, rapid shifts
in gaze (so-called saccades or saccadic eye movements) –
whether spontaneous, volitional, or reflexive – have been of
particular interest, especially in response to suddenly appear-
ing visual stimuli [6], [11], [12]. Such visual reaction tasks
require attention to and continual analysis and evaluation
of the environment as well as appropriate decision-making
and execution of oculomotor responses once a stimulus is
registered. This stimulus-response paradigm therefore probes
cognitive and oculomotor function, either or both of which
can be impaired in neurocognitive diseases [6]. Saccadic eye
movements also provide for a very rich set of features to
analyze. A commonly studied feature is saccade latency, which
is the time elapsed between the appearance of a visual stimulus
and the beginning of the eye movement either toward (pro-
saccade) or away from (anti-saccade) the stimulus [10]. An
increase in saccade latency has been reported in Parkinson’s
disease [13]–[15], dementia with Lewy bodies [13], Hunting-
ton’s disease [16], and Alzheimer’s disease [11], [17]–[20].
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TABLE I
CAMERA & RECORDING SPECIFICATIONS

Frame Rate Resolution ISO Pixel Size Shutter Type Cost
iPhone 6 240 fps 1,280�720 32-160 1.5 �m Rolling $200-400
Phantom v2511 500 fps 1,280�720 6,400-32,000 28 �m Global �$150,000

Additionally, differences in saccade latency and peak saccade
velocity between horizontal and vertical shifts in gaze have
shown to be particularly prominent in patients with progressive
supranuclear palsy [11]. The error rates and types of errors
committed in visual reaction tasks can also provide important
disease-related information [6]. In Huntington’s disease, for
example, anti-saccade error rate has been found to increase
with increased predicted (pre-Huntington’s) or actual (Hunt-
ington’s) disease burden [21].

Even though eye movement patterns provide useful quantita-
tive information about a patient’s disease state, clinical studies
of eye movement disturbances in neurodegenerative diseases
have largely been based on cohort studies with comparatively
small numbers of patients. This might, in part, be related to
the need for special eye tracking equipment and a controlled
environment within which to conduct eye-tracking studies.
Consequently, these studies require patients to visit the clinic
or laboratory to participate in the measurement sessions. An
alternative to this approach could be afforded by performing
eye movement tracking and analysis at the convenience of
the patient on consumer-grade electronic devices such as cell
phones, tablets or laptop computers with user-facing cameras.
In fact, the use of such “digital biomarkers” has recently
attracted significant attention in neurology [22]–[24].

Here, we demonstrate that measurements of saccade latency
can be made robustly using smart phone cameras. We propose
a model-based approach to saccade-onset detection that allows
for automated flagging and rejection of eye-movement traces
that might be of questionable quality. We evaluate the resulting
saccade latency measurements under a variety of environmen-
tal conditions and assess the intra- and inter-subject variability
in saccade latency in healthy subjects. Finally, we determine
the re-test variability of cell-phone based saccade latency
measurements. The work opens the possibility for broader eye-
movement measurements to be conducted on consumer-grade
devices thus enabling tracking of such digital biomarkers on
a much finer timescale (e.g. daily) than is currently possible
with laboratory-based eye-movement assessment and thereby
potentially aiding the characterization of disease progression
and quantification of patient state. A preliminary version of
this work has been reported in [25] and [26].

II. MATERIALS

A. Video recordings

Video recording of volunteers was approved by MIT’s
Committee on the Use of Humans as Experimental Subjects,
and informed consent was obtained from each participant prior
to recording. Subjects were seated centrally in front of a laptop
at a distance of about 1 m, with their chin placed comfortably
on a soft chinrest to minimize head movements. The sequence

of visual stimuli were presented on the laptop screen. A second
monitor was placed behind the subject’s head, facing and
mirroring the laptop screen. An iPhone 6 was placed centrally
between the subject and the laptop screen at a distance of
about 0.5 m from the subject and with the rear-facing (non-
selfie) camera facing the subject. The laptop position was
chosen to generate eye movements of 10� amplitude, and
the camera position was chosen to capture the subject’s face
and the mirrored screen during the task, thus capturing the
eye movement and the visual stimulus sequence in the same
recording. Video recordings were made in slow-motion mode,
resulting in recordings at 240 frames per second (fps) and
a resolution of 1280�720 pixels. In a subset of recordings,
we additionally and simultaneously collected reference videos
with a high-speed camera (Phantom v2511) at 500 fps and
a resolution of 1280�720 pixels (see Table I). The distance
from the high-speed camera to the subject was about 0.9 m; the
camera lenses focused on the subject’s eyes. Most recordings
were acquired under fluorescent lighting. To understand the
robustness of the recordings to realistic variations in ambient
conditions, we collected a separate set of recordings while
varying the lighting conditions with the help of LED panels,
and subjects were recorded with and without glasses.

B. Task design

We used the Psychophysics Toolbox 3 for Matlab [27]
to implement the visual fixation/stimulus task presented to
participating subjects on the laptop screen. A single saccade
task started with a fixation period in which three squares were
presented on the screen, arranged horizontally, against a black
background, a green square at the center of the laptop screen
and two white squares arranged at a horizontal distance on
either side (Fig. 1a). Subjects were asked to fix their gaze
on the green square. After 1000 ms of fixation, all three
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Fig. 1. (a) Example of the visual tracking task during a saccade-latency
measurement. The tasks consisting of a fixation period (F), a gap (G), and
the appearance of the stimulus (S). Only the final 200 ms of the fixation
period are shown. (b) The corresponding horizontal eye movement trace.
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squares disappeared. Following a 200 ms gap, the two lateral
squares reappeared in their original position, with one of them
bounded by a yellow square (the stimulus). Subjects were
tasked with moving their eyes to – and subsequently keeping
their gaze �xed on – the stimulus (Fig. 1b). After the stimulus
disappeared, subjects returned their gaze back to the centrally
located green square. This task was repeated 40 times per trial,
with a total of 20 stimuli appearing on the right and 20 on
the left in randomized order. Each recording session consisted
of three such trials conducted in close succession, resulting in
120 saccade tasks per session and taking about ten minutes to
complete (including breaks between trials).

III. M ETHODS

The two principal steps in determining saccade latency
are (1) eye-trackingto extract the eye position from each
frame in a video sequence, and (2)saccade-onset detection
to determine when the eyes begin to move (Fig. 2). In this
section, we discuss how each step is performed within our
signal-processing pipeline.

A. Eye tracking algorithm

Several algorithms have been proposed to estimate gaze on
portable devices [28]–[30]. Here, we �rst discuss our use of
iTracker [28], a convolutional neural network (CNN) designed
for gaze estimation on smartphones, for tracking the eye
position as a function of time. We then propose iTracker-face, a
subset of the iTracker neural net, for eye tracking and saccade-
onset detection.

To estimate where a user is looking on a screen, iTracker
was trained on static images taken with the front-facing
(sel�e) camera of an iPhone or iPad. These images were
collected through an iOS application named GazeCapture,
which includes built-in iOS face and eye detectors. The inputs
to iTracker include a face grid that indicates the location of
the face within the image, a cropped image of the face and
cropped images of the right and left eye (Fig. 3), where the
cropped face and eyes were determined by the iOS detectors
and were resized to 224� 224 pixels.

Since we did not collect our data through an iOS applica-
tion, we manually annotated six anatomical landmarks on the
�rst frame of each video clip: the two corners of each eye
and the two corners of the mouth. To crop each eye region,
in accordance with [31], we determined the midpoints of the

Fig. 2. Pipeline for automated saccade-latency measurement, consisting of
eye-tracking and saccade-onset detection. The time difference between the
stimulus presentation time (blue line) and the saccade onset (red line) is the
saccade latency.

Fig. 3. Convolutional neural network architecture used by iTracker and
iTracker-face [28]. iTracker processes the face grid and the eye and face layers
(red and blue), while iTracker-face only processes the face layers(blue). See
[28] for details.

inner and outer corners of each eye and surrounded these mid-
points with squares of width 1.5 times the distance between
the corners (Fig. 4). We also computed the centroid of the
six annotated landmarks and determined the face-crop region
likewise as the square of width 1.5 times the largest distance of
any two of the six landmarks, centered at the centroid location.
All images are fed into iTracker at a resolution of 224� 224
pixels, which means they undergo resizing from the original
resolution. The eye crops are upsampled, while the face crop
is downsampled with an anti-alias �lter, using theimresize
function in Matlab. We then apply iTracker to each frame in
the video sequence, and the x-coordinate of the estimated gaze
location over time is taken as the horizontal eye-movement
trace.

While iTracker is designed to operate on video sequences
of 30 fps, a temporal resolution above 50 fps is required for
clinical applications [32]. Thus for this work, we used the
rear-facing camera of the phone in slow-motion mode, which
results in a frame rate of 240 fps and corresponding temporal
resolution of approximately 4 ms. However, the higher frame
rate also results in poorer image quality compared to 30 fps
due to the reduction in exposure time. Recordings taken at 240

Fig. 4. Manual eye crops and face crops for input to iTracker. The corners
of the eyes and the mouth are manually determined on the �rst frame. The
bounding boxes show the regions of eye and face crops derived from these
�ducial markers.
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fps are dimmer than recordings taken at 30 fps. (This is not
an issue with high-end image sensors such as those found in
the Phantom high-speed camera. Phantom v2511 for example
supports larger ISO (see Table I). Although there may be a
trade-off between ISO and digital noise, Phantom v2511 also
has a larger pixel size, which allows Phantom to produce less-
noisier images even at higher ISO.) We discovered that in
some challenging scenarios (e.g. the illumination was low or
the subject was wearing glasses), the variations in the output
of iTracker can be so large that the saccade onset becomes
ambiguous.

To further understand the source of the variations, we tested
the output of iTracker when �xing the face grid input and two
of the other three inputs (left eye crop, right eye crop, and
face crop) to be the �rst frame of the video. We discovered
that the variations in the output will be the smallest when we
only changed the input to the face layers. Since the receptive
�eld in the cropped eye only contains parts of the eye, one
potential explanation for the observation could be that the eye
layers may be trained to learn detailed features in the eyes to
�ne-tune the gaze estimation. On the contrary, the receptive
�eld in the cropped face may contain a full eye. That is, the
face layers may be trained to learn more global features in
the eyes. When the image becomes blurrier, the detailed eye
features will be replaced by noise, which causes the eye layers
more sensitive to noise than the face layers.

To address the comparatively low image quality at high
frame rate, we propose theiTracker-facealgorithm, for which
we only use the face-related convolutional layers of iTracker
(Fig. 3 blue layers). Although this choice does degrade the
accuracy of the gaze estimation as discussed in [28], our
objective is to determine if the gaze changes. Fig. 5 shows
a sample eye-position trace using the iTracker and iTracker-
face algorithms. In our application, iTracker-face generally has
higher signal-to-noise ratio than iTracker.

B. Modeling horizontal eye-movement traces

To calculate saccade latency, it is necessary to determine the
onset of the eye movement toward the target. In prior work,
the saccade onset has commonly been de�ned as an increase
in eye velocity above a prede�ned threshold [17], [32], such
as 30� /s, where the velocity is commonly determined through
numerical differentiation and subsequent �ltering of the raw
eye-position tracing [33]. Such saccade-onset determination
requires accurate measurement of gaze and is prone to signif-
icant error at low sampling rates [34].

Fig. 5. The same sample eye-movement trace from (a) iTracker and (b)
iTracker-face.

Fig. 6. Eye position as estimated by the iTracker-face algorithm (gray) and
hyperbolic tangent �t (black). The dashed line at 0 s indicates the moment
of stimulus presentation. The saccade onset is determined by an increase in
saccade amplitude above 3% of the target saccade amplitude.

Here, we instead propose to model the eye-position trace
during a saccade task as a hyperbolic tangent of the form

~x(t) = A + B � tanh
�

t � C
D

�

and �t the model to the the eye-position tracing from 100
ms before to 500 ms after the stimulus presentation (Fig. 6).
The �tting was performed using the nonlinear least-squares
solver lsqcurvefit in Matlab to estimate the model pa-
rametersA; B; C; D . Using these optimal model parameters,
we determine the saccade onset as the time when the best-�t
solution exceeds 3% of the maximal saccade amplitude, which
is independent of the velocity of the saccade.

In addition to generating well-behaved velocity tracings, this
model-based approach has the bene�t of providing a goodness-
of-�t metric on the basis of which the reliability of saccade
tracings can be evaluated in an automated manner, as the
normalized root-mean-squared error (NRMSE) between the
model �t and the eye-position trace quanti�es the residual
discrepancy between the two. Here, the normalization was
done to the saccade amplitude (10� in our experiments).
Measurements contaminated by excessive noise, artifact, or
eye movements in the wrong direction typically result in a
high NRMSE value while reliable measurements result in a
low NRMSE. Thresholding the NRMSE allows for automated
rejection of recordings in which the saccade onsets might have
been erroneously detected or the measurements are subject
to excessive variability, noise or artifact. After evaluating the
sensitivity and speci�city of saccadic eye-movement traces
across a range of candidate NRMSE thresholds, we selected
the NRMSE threshold and included in our analysis traces for
which the optimal model �t resulted in a NRMSE< 0.1 (see
Section IV-B for more details).

IV. A LGORITHM EVALUATIONS

A. Robustness of eye tracking algorithms

To determine the robustness of iTracker and iTracker-face
under a variety of environmental conditions that may be
encountered outside the well-controlled clinical setting for
eye-movement measurements, we compared the performance
of the algorithms on video sequences of subjects with and
without glasses and under various ambient lighting conditions.
Two illumination-adjustable LED panel lights were used to
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vary the illumination during the recording sessions. In total,
four distinct lighting conditions were tested: (1) room light
switched on in addition to the panel lights set to high (278
Lux); (2) room light switched on without additional lighting
support from the LED panels (220 Lux); (3) room light
switched off and the panel lights set to medium (54 Lux); and
(4) room lights switched off and the panel lights set to low (26
Lux). Illuminance was measured at the participant's face using
an LT40 LED Light Meter (Extech Instruments). Figure 7
shows how the lighting conditions affect image brightness.
Five subjects contributed 120 saccade tasks under each of the
four lighting conditions with and without glasses, for a total
of eight test conditions per subject.

The video sequences were processed with both iTracker and
iTracker-face, and the 9,600 resultant eye-movement traces
were each reviewed by two annotators. Each annotator in-
dependently determined if a trace represented a horizontal
saccade movement and had suf�ciently high signal-to-noise
to allow for credible saccade-onset determination. Traces
that met these criteria were labeled `good'; all other traces
were labeled `bad'. Traces labelled as `bad' were typically
interrupted by blinks, initially directed toward the opposite
direction of stimulus presentation, or had a low signal-to-noise
ratio. To assess the annotator agreement, we computed both
the accuracy (fraction of annotations in which both annotators
agreed) and Cohen's kappa coef�cient (� ). The algorithm with
the highest fraction of `good' saccade traces, as judged by both
annotators, across the different environmental conditions was
deemed the more robust algorithm.

Figure 8 reports the inter-rater annotation accuracy, broken
down by `agreed good' and `agreed bad', for both algorithms
and each of the eight environmental conditions tested. The
average annotation accuracy was 94.1% for eye-movement
traces generated by iTracker-face and 86.8% for iTracker,
with corresponding Cohen's� values of 0.802 and 0.730,
respectively. These results indicate excellent inter-rater agree-
ment for the overall annotation task, which means that their
judgment can be used as a benchmark. Their annotations
also reveal that important trends exist between algorithms and
across environmental conditions. The inter-rater agreement is
lower when participants wear glasses and tends to decline with
decreasing illuminance. For example, at the lowest illuminance
level (26 Lux) and with participants wearing glasses, the
annotators agreed in their label of `good' in over 40% of the
traces generated by iTracker-face. In contrast, their agreement
of what constitutes a good saccade trace was less than 8% of

Fig. 7. A sample frame from each video taken under four distinct lighting
conditions. From left to right, the pictures are arranged from the highest
illuminance (278 Lux) to the lowest (26 Lux).

the traces generated by iTracker. Obviously poor illumination
conditions result in image sequences with lower contrast
which makes it harder to detect eye features and subtle eye
movements. A closer inspection of the video sequences also
revealed that glasses, especially those with dark rims, tend to
cast shadows that can obscure the eye regions. Additionally,
some glasses have lenses with high re�ectivity that make the
eyes even less visible and therefore dif�cult to track.

Across all eight conditions tested, the average fraction of
traces judged as good by both annotators was consistently
and signi�cantly higher for traces generated by iTracker-
face (78.9%) than for those generated by iTracker (50.7%).
We conclude from this analysis that across all environmental
conditions tested, iTracker-face is the more robust algorithm
of the two and therefore formed the basis of all subsequent
results reported here.

B. Automation of saccade-onset detection

Annotation of the 9,600 eye-movement traces took each
annotator about 12 hours to complete. Since our goal is to
leverage smartphones to make eye-movement recordings and
analyses widely available and ubiquitous, visual inspection of
individual tracings is not an option. Having identi�ed iTracker-
face as the more robust of the two algorithms for iPhone-
based eye-movement tracking, we applied the tanh model to
the resultant eye-position traces to estimate saccade onset. To
evaluate the usefulness of the NRMSE as an automated metric
to �ag bad saccades, we used the expert-annotator labels as
the ground truth for all iTracker-face derived traces described
in the previous section and swept the NRMSE threshold
to generate a receiver-operating characteristic (ROC) curve.
By separately considering each annotator's judgment as the
ground truth, we obtained two ROC curves (Fig. 9), one for
each annotator, and generated associated 95% con�dence in-
tervals (CI) for the true positive rate by strati�ed bootstrapping
over 2,000 replicates at �xed false positive rate [35]. The
two resultant ROCs tracked each other closely and achieved
an area under the curve (AUC) of 0.923 (95% CI: 0.913 –
0.932) and 0.933 (95% CI: 0.923 – 0.943), respectively. If we
consider all traces with a NRMSE< 0.1 as `good' saccades,
we achieve average true positive rates of 0.87 and 0.86 and
average false positive rates of 0.20 and 0.16 for the �rst and
second annotator, respectively. In the following, we selected
an NRMSE of 0.1 as the threshold.

C. Comparison across cameras

To verify that recordings from consumer-grade cameras can
lead to similar saccade-latency statistics as those obtained
from recordings of high-end, research-grade cameras, we
took simultaneous recordings on four subjects using a low-
cost, consumer-grade camera (iPhone 6) and a research-grade
camera (Phantom v2511, see Table I for their speci�cations).

Fig. 10 shows the resulting saccade-latency distributions
obtained using the iTracker-face algorithm and the model-
based onset detection. The inclusion of the high-speed camera
in the recording set-up resulted in increased distances between
the subject and the cameras, as well as between the subject
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Fig. 8. Annotation accuracy broken down for each of the eight environmental conditions tested per algorithm. The accuracy (or percentage of agreed
annotations) is additionally broken down into the fraction of agreed-good and agreed-bad eye-movement traces between two annotators.

Fig. 9. Performance of model-based �tting in classifying saccades. The
adjudications of two annotators were taken as the ground truth, with the solid
lines being the corresponding mean ROC curves. The shaded areas indicate
the con�dence intervals for the true positive rate. The parentheses mark the
95% con�dence intervals for the areas under the curves.

and the laptop's screen. The increased distances result in
a smaller horizontal eye movement, which in turn produce
slightly noisier, but acceptable, eye movement traces. Fig. 10
demonstrates that the distributions from both cameras are
consistent, with negligible differences in the mean saccade-
latency values and associated standard deviations between the
two recording systems.

D. Face-crop automation

To fully automate the signal-processing pipeline of Fig. 2,
we replaced the manual face annotation and cropping (Fig. 4)
with an automated face-detection step. As mentioned in Sec-
tion II, with the head supported by the chinrest, we can expect
the position of the face to remain relatively stable throughout
a sequence of saccade tasks and the manually determined face

region to remain valid throughout the subsequent frames of a
video recording. To automate the face-region determination,
we used the Viola-Jones face detector [36] and evaluated
the changes in the estimated saccade latencies after this
automation on 158 sessions of recordings. The mean absolute
differences in the mean per-session saccade latencies with
an NRMSE< 0.1 was 1.10 ms with an associated standard
deviation of 1.24 ms (Fig. 11). We therefore conclude that
automating the face-detection step does not materially affect
the saccade-latency determination in normal subjects. This
result may be understood by considering that the convolutional
layers in iTracker are trained to properly adjust gaze estimation
under translation and scaling differences in the cropped face.
As a result, the shape of the resulting eye-movement traces are
hardly changed given slight differences in the cropped regions
of the face.

E. Chinrest dependence

Ideally, we would like to enable eye-movement capture and
analysis without the need for restraining the head. Without
the chinrest in place, the assumption of limited head move-
ment throughout the (approximately) two-minute 40-saccade
sequence is bound to be violated. However, the assumption
might still be reasonable over the course of a single saccadic
eye movement, of which we typically analyze 600 ms (from
100 ms before till 500 ms after stimulus presentation). To test
this hypothesis, we conducted two sessions of video recordings
in four subjects each with and without the participants' heads
resting on the chinrest (16 sessions in total). We applied the
Viola-Jones face detector to the �rst frame of each individual
saccade tracing and used the detected face region from the �rst
frame and applied it to every subsequent frame. If there had
been any signi�cant head movements within a single saccade
trial, we would have expected the tanh model to no longer
attain low NRMSE �ts. When the Viola-Jones face detector
was applied to iTracker-face derived eye-movement traces on
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Fig. 10. Saccade-latency distributions from four subjects obtained from video recordings using (a) the iPhone 6 and (b) a Phantom v2511 high-speed camera.

Fig. 11. The absolute difference in mean saccade latencies between face
crop based on manual face annotation and automated face detection using the
Viola-Jones algorithm [36].

recordings obtained with and without chinrest, most of the
traces have comparable signal-to-noise (Fig. 12). Additionally,
we performed a formal analysis of variance (ANOVA) test to
assess whether a signi�cant difference existed between mean
saccade latencies measured with and without chinrest. The null
hypothesis of a signi�cant difference was rejected (p = 0.59).
We therefore conclude that in healthy volunteers, the chinrest
is not essential to obtaining recordings of suf�cient quality for
saccade-onset detection and saccade-latency determination.

The selection of iTracker-face to generate the eye-movement
tracings, the NRMSE threshold value of 0.1 to select traces
for inclusion in our analysis, and the Viola-Jones algorithm
for automated face detection on the �rst frame of each saccade
task video sequence completes the automation of the saccade-
latency determination pipeline of Fig. 2. In the next section,
we apply this pipeline to determine the intra- and inter-subject
variability in saccade-latency measurements obtained from
video sequences of healthy subjects, and explore the statistical

Fig. 12. Two examples of saccadic eye-movement traces in the same subject.
(a) Recording with chinrest, and (b) recording without chinrest. They have a
comparable signal-to-noise level.

modeling of the saccade-latency distributions.

V. DATA ANALYSIS

A. Saccade-latency determination in healthy individuals

We recorded 19,200 saccadic eye movements across 160
experimental sessions in 29 healthy subjects (20 males, 9
females; median age: 27 years; age range: 22–64 years),
including �ve or more repeat recording sessions in a subset
of eleven subjects. In two recording sessions, the Viola-Jones
algorithm failed to detect the face of the subject, so the results
presented here are based on 158 experimental sessions in 29
subjects.

Applying the NRMSE< 0.1 criterion to accept saccadic
eye movements for analysis resulted in an average retention
rate of 82.3% (100 of the 120 saccadic eye movements per
experiment). Consistent with prior work [17], we further
excluded from our analysis saccade latencies of 80 ms or
less. This censoring excludes anticipatory eye movements but
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