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Abstract—Objective: To enable reliable cerebral embolic5
load monitoring from high-intensity transient signals6
(HITS) recorded with single-channel transcranial Doppler7
(TCD) ultrasound. Methods: We propose a HITS detection8
and characterization method using a weighted-frequency9
Fourier linear combiner that estimates baseline Doppler10
signal power. An adaptive threshold is determined by exam-11
ining the Doppler signal power variance about the baseline12
estimate, and HITS are extracted if their Doppler power13
exceeds this threshold. As signatures from multiple emboli14
may be superimposed, we analyze the detected HITS in the15
time-frequency (TF) domain to segment the signals into16
individual emboli. A logistic regression classification ap-17
proach is employed to classify HITS into emboli or artifacts.18
Data were collected using a commercial TCD device with19
emboli-detection capabilities from 12 children undergoing20
mechanical circulatory support or cardiac catheterization. A21
subset of 696 HITS were reviewed, annotated, and split into22
training and testing sets for developing and evaluating the23
HITS classification algorithm. Results: The classifier yielded24
98% and 96% sensitivity for 100% specificity on training and25
testing data, respectively. The TF approach decomposed26
38% of candidate embolic signals into two or more embolic27
events that ultimately account for 69% of the overall28
embolic counts. Our processing pipeline resulted in highly29
accurate emboli identification and produced emboli counts30
that were lower (by a median of 64%) compared to the com-31
mercial ultrasound system’s estimates. Significance: Using32
only single-channel, single-frequency Doppler ultrasound,33
the proposed method enables sensitive detection and34
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segmentation of embolic signatures. Our approach 35
paves the way toward accurate real-time cerebral emboli 36
monitoring. 37

Index Terms—Emboli, patient monitoring, stroke, time- 38
frequency analysis, transcranial ultrasound. 39

I. INTRODUCTION 40

ACUTE neurological complications remain an important 41

clinical problem in patients undergoing extracorporeal 42

membrane oxygenation (ECMO) [1]–[3] and ventricular as- 43

sist device (VAD) support [4]. One cause of acute brain injury 44

in these populations is cerebral embolism, which may be de- 45

tected clinically in real-time by transcranial Doppler (TCD) ul- 46

trasonography as high intensity transient signals (HITS) within 47

the Doppler spectrum [5]–[7]. HITS, representing cerebral em- 48

boli, may be composed of air, thrombi, atheromatous plaque, 49

lipid, or platelet aggregates. Cerebral emboli can occlude the 50

cerebral vasculature, potentially causing transient ischemic at- 51

tacks, stroke, or other acute neurologic injury. A clear under- 52

standing of the prevalence and clinical significance of HITS in 53

patients on mechanical circulatory support (ECMO, VAD) or 54

undergoing cardiac catheterization, and at high risk of cerebral 55

embolic events is lacking. In a previous study in children with 56

congenital heart disease undergoing cardiac catheterization, we 57

found the process of visual review and manual annotation of 58

HITS and their classification into emboli and artifacts to be 59

prohibitively time consuming and essentially impossible when 60

HITS occurred in clusters (often designated as curtains or show- 61

ers) [8]. We also found that commercial TCD emboli-detection 62

software generated excessive false positive events. 63

Typical ultrasound-based emboli detection methods use base- 64

band (Doppler) ultrasound signals from one or two depths and 65

one or two simultaneous insonation frequencies [9]–[11]. The 66

signals may first be prefiltered, for example using wavelet trans- 67

forms [12]–[15], to help differentiate embolic signals from ar- 68

tifacts and background blood signatures. HITS may then be 69

detected using the embolus-to-blood ratio (EBR), defined as the 70

ratio of backscattered power from an embolic source, normal- 71

ized by the power calculated over data segments not containing 72

any emboli. Embolic sources tend to have a high EBR because 73

of their size and acoustic impedance mismatch relative to sur- 74

rounding blood [16], [17]. 75

Robust emboli detection using EBR is a challenging task, 76

however. A baseline Doppler power level of the normal (non- 77

embolic) blood flow must first be established. This baseline 78
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power estimate should vary with the cardiac cycle since the79

backscattered Doppler power due to pulsatile blood flow is mod-80

ulated by an order of magnitude between systole and diastole.81

A dynamic detection threshold must also be determined, so that82

EBR excursions above that threshold can be flagged as candidate83

emboli. A subsequent artifact rejection stage is required since84

tissue or ultrasound probe motion can generate large excursions85

in EBR that should not be counted as emboli. Finally, mul-86

tiple emboli may flow through the ultrasound sample volume87

simultaneously, and the corresponding Doppler signal should88

be decomposed into individual embolic signatures for accurate89

counting. Lipperts et al. [18], for instance, reported that existing90

commercial TCD systems do not accurately estimate the num-91

ber of cerebral emboli in such situations. To our knowledge, the92

problem of automatically separating signatures from multiple93

simultaneous emboli using single-depth, single-frequency TCD94

systems has not been addressed in the literature.95

In this paper, we describe a signal processing pipeline that en-96

ables real-time HITS detection and classification into likely em-97

boli and artifact using single-channel, single-frequency Doppler98

data. We model Doppler baseline power as a Fourier series, and99

propose a weighted-frequency Fourier linear combiner (WFLC)100

[19] to adaptively estimate the Fourier coefficients in real-time.101

Variance of the Doppler power about this baseline leads to an102

adaptive HITS detection threshold. Disabling WFLC adaptation103

during HITS allows us to retain estimates of the signal back-104

ground during prolonged periods of HITS showers or artifact.105

We then propose an algorithmic separation of detected HITS106

into signatures from individual emboli by time-frequency (TF)107

analysis. Finally, logistic regression classification is used to re-108

ject artifacts. The method was evaluated on data from twelve109

pediatric patients undergoing ECMO, VAD support, or cardiac110

catheterization.111

We first outline the data collection and annotation steps in112

Section II. We then describe our emboli detection and TF-based113

separation approach in Section III. The artifact rejection classi-114

fier is described in Section IV, and we present and discuss the115

results of applying our processing pipeline in Sections V and116

VI, respectively.117

II. DATA COLLECTION AND ANNOTATION118

The study was approved by the Boston Children’s Hospital119

Institutional Review Board. Written informed consent was ob-120

tained for all subjects from the legally authorized representative,121

and patient assent was obtained whenever possible. Children on122

mechanical circulatory support (MCS), i.e. ECMO or VAD, or123

undergoing cardiac catherization were eligible for study inclu-124

sion. Subjects who lacked an acoustic window to permit TCD125

ultrasound examination of the middle cerebral artery (MCA)126

were excluded after enrollment. Subjects underwent emboli127

monitoring of the right or left MCA with a dual frequency128

(2 + 2.5 MHz), range-gated, pulsed-wave TCD system (DWL129

Doppler-BoxX, Compumedics Germany GmbH, Singen, Ger-130

many). The ultrasound probe was handheld, or secured in place131

with a soft elastic headband, over the right or left temporal132

window. Emboli monitoring began once an adequate Doppler133

signal was obtained from the M1 segment of the MCA at the 134

level of the bifurcation of the MCA and anterior cerebral artery. 135

Data were collected from eight patients on MCS (3F, 5M, ages: 136

3 weeks to 14 years), and four patients undergoing cardiac 137

catheterization (1F, 3M, ages: 4 months to 14 years). Recording 138

durations ranged from 9 to 118 minutes for a total 625 minutes 139

(10.5 hours) of data. Further clinical details of our patient cohort 140

are provided in the appendix. 141

The comparatively large volume of ultrasound data collected 142

precluded exhaustive manual HITS annotation and classification 143

into embolic and artifact events. We therefore first extracted can- 144

didate HITS using an automated approach reported previously 145

[20], and two expert annotators (KLL, BDK) were presented 146

with candidate HITS so identified from a subset of seven MCS 147

patients. Each annotator independently assessed each candi- 148

date HITS using previously published criteria for emboli de- 149

tection [21] and indicated whether each identified segment was 150

judged to be an embolic event, an artifact, or the annotator 151

was unsure which of the two categories to assign. Only HITS 152

marked by both annotators as either emboli or artifacts were 153

used for training and testing. A 60% cohort of annotated data 154

segments was randomly selected and used for training of the 155

artifact-rejection classifiers (Section IV). The remaining anno- 156

tated data from the MCS patients were used for testing classifier 157

performance. To determine the robustness of our emboli clas- 158

sification approach, we retained the data from the four cardiac 159

catheterization patients as an independent hold-out validation 160

cohort that was neither used for classifier training nor testing. 161

III. HITS DETECTION 162

A. Data Preprocessing 163

The DWL Doppler-BoxX exports Doppler data in binary for- 164

mat along with timestamps of the emboli detected by the de- 165

vice’s proprietary software. The device exports the inphase, ri , 166

and quadrature, rq , demodulated signals for the selected target 167

depth from one insonation frequency (2 MHz) [22]. From the 168

exported signals we form the complex signal rn = ri
n + jrq

n , 169

where n is a discrete sampling index with samples recorded at 170

the pulse repetition frequency, PRF. Since the DWL system 171

generates separate binary files whenever the acquisition param- 172

eters are modified during a recording session, we concatenated 173

the Doppler streams from each file by rescaling the signals to a 174

common signal gain and by using MATLAB’s resample func- 175

tion to resample all segments to the highest PRF used during 176

the recording session. In accordance with prior work [9], [10], 177

we computed the signal power, P , in non-overlapping data win- 178

dows of 2 ms duration. For the mth non-overlapping window of 179

length Np , the power was computed as 180

Pm =
1

Np

mNp∑

k=1+(m−1)Np

|rk |2 (1)

Since the Doppler signal power can vary by an order of mag- 181

nitude during the cardiac cycle, we base our HITS detection 182

and segmentation approaches on the log-transformed power 183

Pm = 10 log10(Pm ). 184
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Fig. 1. Adaptive WFLC filtering architecture. Doppler power is computed and log-transformed. The difference, em , between the computed, Pm ,
and predicted, P̂m , value is used to adapt the Fourier coefficients for modeling the baseline signal. A HITS is determined if the prediction error, em ,
exceeds an adaptive threshold, γm , in which case the Fourier coefficients are not adapted in order to retain the baseline estimate. Here, ζ0 and
{wi}2A

i=0 are the harmonic frequency and Fourier coefficients, respectively. Dashed lines indicate adaptive steps of the WFLC architecture.

B. HITS Detection185

For HITS detection, we propose an adaptive baseline power186

estimation approach that uses a modified WFLC [19]. The187

WFLC was originally developed for canceling physiological188

tremor in robotic surgery applications; it models a quasi-periodic189

signal as a Fourier series, estimating the Fourier series co-190

efficients and the harmonic frequency in real-time and in an191

adaptive manner. The original WFLC method was designed to192

continually update its parameters. In our approach, we update193

the parameters only during baseline flow conditions and forgo194

updating when a candidate HITS is detected. For each 2 ms195

data window, we compute the difference, em , between the log-196

transformed power estimate, Pm , from a predicted background197

power, P̂m , for that window. A HITS is detected if em > γm ,198

where γm is an adaptive threshold. The WFLC parameters and199

γm are retained (i.e. not updated) if a HITS is detected and200

updated otherwise. The resulting algorithm architecture is illus-201

trated in Fig. 1.202

More concretely, given initial estimates for the filter weights,203

w1 and w0,1 , and the fundamental frequency, ζ0,1 , a prediction204

at a later sample is computed as205

P̂m = wᵀ
m xm + w0,m (2)

where wm = [w1,m , ..., w2A,m ]ᵀ are the estimated Fourier co-206

efficients, w0,m is the estimated DC bias, A is a preset number207

of harmonics to be estimated, and xm = [x1,m , ..., x2A,m ]ᵀ is208

the set of Fourier terms209

xa,m =

{
sin (a

∑m
l=1 ζ0,l) , 1 ≤ a ≤ A

cos ((a − A)
∑m

l=1 ζ0,l) , A + 1 ≤ a ≤ 2A
(3)

To update the parameters from one window to the next, we 210

define the prediction error 211

em ≡
{

Pm − P̂m , Pm − P̂m ≤ γm

0, Pm − P̂m > γm

(4)

where the latter condition occurs during a HITS. Setting the 212

associated error term to zero prevents parameter adaptation to 213

the embolic or artifact signal properties. The WFLC parameters 214

are then updated by performing a gradient-descent step in which 215

wm+1 = wm + μxm em (5a)

w0,m+1 = w0,m + μ0em (5b)

ζ0,m+1 = ζ0,m

+ μζ em

A∑

a=1

a (wa,m xA+a,m − wA+a,m xa,m )

(5c)

where μ, μ0 , and μζ are preset adaptation parameters [19]. To 216

initialize the computation, we provide estimates of the funda- 217

mental frequency (heart rate), and the corresponding Fourier 218

series coefficients by computing the discrete Fourier transform 219

of the first 10 seconds of Pm and by analyzing the dominant 220

frequencies, amplitudes, and phases. 221

To determine the detection threshold, we examine the stan- 222

dard deviation of prediction errors. (A similar strategy was pre- 223

viously proposed in [23].) In our method, the detection threshold 224

is set to 225

γm = α × ŜD(em ) (6)

where α is a tunable parameter and γm is not allowed to ex- 226

ceed 15 dB for system stability. We empirically set α = 3 to 227

strike a balance between high probability of detecting emboli 228
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TABLE I
WFLC PARAMETERS

Fig. 2. Measured Doppler power (gray) along with WFLC-derived base-
line power estimate (black), adaptive detection threshold (green), and
segmented HITS (red).

and acceptable probability of false alarm. ŜD(em ) is a recur-229

sively low-pass filtered version of the standard deviation of the230

prediction errors, SD(em ), in HITS-free segments231

ŜD(em ) = αlp × ŜD(em−1) + (1 − αlp) × SD(em ) (7)

where αlp was set to 0.9. The WFLC parameters used in our232

analysis are summarized in Table I, and the resulting baseline233

and threshold estimates for a representative data segment are234

shown in Fig. 2.235

The WFLC parameters are reinitialized if a HITS segment236

longer than Treinit = 10 s is detected. This is to prevent changes237

in signal quality or probe position from being falsely detected238

as embolic signatures. The detected candidate HITS segments239

can be quite long in duration, which can lead to significant240

computation load in the subsequent TF analysis. To reduce this241

load, we split HITS into sub-segments of at most Tmax = 0.25 s.242

C. HITS Separation243

HITS detected by the WFLC-based method can often ap-244

pear as consisting of multiple individual embolic signatures that245

are temporally merged. We therefore further examined the fine246

structure of the detected HITS and separated HITS into con-247

stituent embolic events via TF analysis.248

To perform the TF analysis, we used a discrete-time approx-249

imation of the continuous wavelet transform. Specifically, a250

detected HITS is passed through a filter bank that enables real-251

time computation. Each filter is a Gaussian kernel modulated252

to a center frequency, fv . Each center frequency corresponds 253

to a Doppler velocity, v, according to the Doppler equation 254

fv = 2f0v/c, where we assume c = 1540 m/s as the speed of 255

sound, and f0 = 2 MHz is the transmitting frequency. We denote 256

the resulting TF decomposition at time sample n and Doppler 257

velocity v as Rn,v 258

Rn,v = rn∗hn,v (8)

where the convolution is performed in time and hn,v is a band- 259

pass filter of the form 260

hn,v = h0
|fv |√

2πPRF
e−(n/2σv PRF)2

ej2πfv n/PRF (9)

The filter has a temporal spread governed by σv , and h0 is a 261

scaling constant. In our approach, we select the center veloci- 262

ties, v, in a logarithmic fashion, such that Vmin < |v| < Vmax , 263

where Vmin = 0.05 m/s, Vmax = (0.5 PRF × c/(2f0) − Vmin) 264

m/s, and 200 center velocities are used. We set σv = SV/βv, 265

where β = 10 is a scaling constant, and SV is the value of the 266

sample volume selected during data acquisition. (The term sam- 267

ple volume is a misnomer since it represents the axial length of 268

the insonated region and not a volume; we retain its use since 269

the term is widely accepted.) Filters for higher center veloc- 270

ities therefore have narrower temporal spread, allowing finer 271

temporal localization of embolic signals. 272

A given TF image may then be inverted back to the time 273

domain as 274

R−1
n =

∑

v

Rn,v (10)

We first segment HITS in the TF domain before conducting a 275

linkage step to merge signatures that may correspond to the same 276

embolus. The resulting merged signatures are then inverted back 277

to the time domain as illustrated in Fig. 3. The segmentation and 278

merging steps proceed as follows: 279

1) TF Segmentation: For each TF domain image, we gen- 280

erate a threshold and segment the absolute value of the TF image 281

of the selected HITS. The threshold is generated by applying 282

Otsu’s method [24] on log-compressed absolute values of the 283

TF representation (MATLAB’s graythresh function), and taking 284

the anti-log of the resulting threshold. Log-compression is used 285

since the TF pixel values can vary by several orders of magni- 286

tude. Applying the thresholding method on the raw TF images 287

may therefore lead to unsuitably high thresholds. Regions of 288

the absolute TF representation that are higher than the threshold 289

are segmented into patches. First, a rescaled TF image, RSn,v 290

is generated according to 291

RSn,v =
|Rn,v | − Rmin

Rmax − Rmin

where Rmin and Rmax are the minimum and maximum ab- 292

solute values in the TF representation, respectively. Rescaling 293

allows the application of the H-minima transform [25] to RSn,v 294

in order to suppress local minima; we used an empirically de- 295

termined suppression threshold of 0.001. The Watershed image 296

segmentation algorithm [26] is then used on the resulting image 297

to extract patches that are above the detection threshold. 298



IMADUDDIN et al.: TIME-FREQUENCY APPROACH FOR CEREBRAL EMBOLIC LOAD MONITORING 5

Fig. 3. Time-frequency analysis procedure. A selected embolic HITS
(a) is transformed into the TF domain (b). The corresponding TF image
is segmented into patches using morphological image processing (c).
Individual patches are merged in order to yield TF sub-domains plausibly
corresponding to individual embolic segments (d). The final selected sub-
domains are then transformed back to the time domain, reclassified, and
embolic segments are retained (e).

For each patch, we compute the location of the highest inten-299

sity, (nmax , vmax), and the normalized traveled distance, ND.300

The latter is computed by first determining the instantaneous301

velocity ĨV n for each sample, n, and subsequently integrating302

the velocity. The absolute of the resulting displacement is nor-303

malized by the sample volume, SV. The instantaneous velocity,304

ĨV n , is estimated by computing a weighted average of the TF305

image for each n, such that ĨV n =
∑

v |vRn,v |/
∑

v |Rn,v |. The 306

metrics nmax , vmax , and ND are used subsequently to merge 307

patches that potentially correspond to the same embolus. 308

2) TF Merging: The segmentation process may result in 309

separate patches that belong to the same embolic signal. To 310

avoid such spurious fragmentation and overcounting of embolic 311

events, a merging step is necessary. We designed a set of rules 312

to determine if such merging is necessary. Patches are merged if 313

they are close in speed and time, have not individually traversed 314

a sizable fraction of the sample volume, and do not lead to large 315

traveled distances when combined together. Specifically, two 316

patches i and j are merged on the basis of 317

1) the time between their intensity maxima 318

(|nmax,i − nmax,j |/PRF < Tmin), 319

2) the absolute difference between their velocity maxima, 320

(| |vmax,i | − |vmax,j | | ≤ Δv), 321

(3) their respective traveled distance (ND < NDmin), 322

(4) the normalized displacement of the union of the patches, 323

(ND′ < NDmax). 324

Here, Tmin , NDmin , NDmax , and Δv are predefined thresh- 325

olds set to 6 ms, 0.85, 1.25, and 0.5 m/s, respectively, and all 326

conditions must be met for a merger. In our approach, we con- 327

sider all possible pairs of HITS until we merge a pair that fits 328

these criteria. The process is then repeated for the new set of 329

patches until no further matches can be made. The algorithm 330

reverts to the segments fed originally to the TF-based segmen- 331

tation stage if the merging process does not converge within 332

a maximum number of passes, set to 100. Finally, the merged 333

segments are converted to the time domain. Artifacts in the 334

remaining segments are then removed using a feature-based 335

classifier described below. 336

IV. ARTIFACT REJECTION 337

Since embolic signals are generally longer than 8 to 10 ms 338

in duration [8], [21], we first rejected any detected HITS from 339

further analysis if their duration was less than 6 ms (or three 340

2 ms data windows). To classify the remaining HITS into likely 341

emboli or artifact, we applied a feature-based logistic regression 342

classifier. We computed and evaluated six candidate HITS fea- 343

tures and selected a subset of three features for our final artifact 344

rejection classifier. The final classifier is applied twice, once 345

after the initial WFLC-based HITS detection step and then after 346

the final TF emboli separation step. 347

A. HITS Features 348

1) Unidirectionality: Emboli are known to move in the di- 349

rection of blood flow [21] leading to a single-sided Doppler 350

frequency spectrum. A quantitative measure of such unidirec- 351

tional flow is the ratio P≥0/P<0 [9], where P≥0 and P<0 are 352

the power of the HITS in the positive and negative frequency 353

bands, respectively, and blood flow is assumed to be in the posi- 354

tive direction. It is possible, however, to simultaneously insonate 355

two vessels with opposite flow directions, and thus a dominant 356

blood flow direction cannot be assumed a priori. Also, the ratio 357

can assume arbitrarily large values. Thus, we define the 358



6 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING

Fig. 4. HITS features for an embolus (left panel) and artifact (right panel). Features are derived from the inphase (solid grey), quadrature (dashed
grey), and envelope (solid black) time-domain Doppler signals. The signal’s instantaneous velocity (IV) is first determined (dashed green) and its
median (solid green) is computed. The IV is integrated over time to determine the HITS displacement (dashed red) that is subsequently normalized
by the sample volume (solid red). The Fourier transform of the Doppler signals (blue) is used to determine spectral concentration and unidirectionality.
Temporal skewness (not shown) is determined from the signal envelope (solid black).

(nondimensional) unidirectionality, U , as359

U =

{
u/umax , u ≤ umax

1, u > umax

(11)

where u = max
(P≥0

P<0
,
P<0

P≥0

)

where we set umax = 1000 and computedP≥0 andP<0 by sum-360

ming the squared magnitude values of the Blackman-windowed361

discrete Fourier transform, F (ω), computed over the duration362

of each candidate HITS (Fig. 4).363

2) Spectral Concentration: We expected emboli to travel364

at a finite range of velocities, leading to frequency spectra con-365

centrated around a center frequency. We computed a measure366

of such spectral concentration as367

max
ω

( |F (ω)|∑
ω |F (ω)|

)

with values close to unity indicating a high degree of spec-368

tral concentration and values close to zero indicating a broad369

frequency spectrum.370

3) Speed: In contrast to emboli, artifacts commonly have371

bidirectional frequency spectra [9], [21]. Thus, we expected372

artifacts to have average Doppler speeds close to zero, and373

computed the instantaneous signal frequency, IFn , by numer-374

ically differentiating the unwrapped instantaneous phase [27],375

arg{r[n]}, of the Doppler signal376

IFn ≈ PRF × arg{r[n]} − arg{r[n − 1]}
2π

(12)

According to the Doppler equation [28], the instantaneous377

velocity, IVn , is then378

IVn =
c

2f0
IFn (13)

where we assume that the insonation direction is parallel to the379

flow direction. We then define the HITS speed for the ith HITS380

as 381

si = |mediann (IVn )| (14)

where the time index n spans the duration of the detected HITS. 382

(Here, the definition of instantaneous velocity introduced earlier 383

in Section III-C was not used in order to bypass the need to 384

convert HITS into their TF representations.) 385

4) Normalized Distance: Motivated by the work of Smith 386

et al. [29], we note that emboli tend to traverse a significant 387

fraction of the target SV. Thus, we integrate IVn over time, 388

and normalize the absolute value of the resulting displacement 389

by SV. In our implementation we use trapezoidal integration to 390

compute the HITS displacement before normalizing the absolute 391

value of the result by SV. 392

5) Temporal Skewness: We observed that artifacts tend 393

to have a significantly skewed temporal envelope (Fig. 4). We 394

therefore defined skewness as the time from the start to the peak 395

of the envelope divided by the total HITS duration. A value of 396

0.5 indicates no skew; artifacts tend to have a temporal skewness 397

value that is small compared to this reference. 398

6) Measured/Expected Duration: In our visual review of 399

sample data, we found artifacts to have a short duration com- 400

pared to embolic signatures that are expected to have durations 401

corresponding to their speed and SV [29]. Thus the ratio of 402

measured to expected duration may provide a means of sepa- 403

rating artifacts from embolic events. We computed the expected 404

duration as d̂i = SV/si . 405

B. Classifier Design 406

We employed logistic regression in our artifact rejection clas- 407

sifier. Emboli were assigned the value of 1 and artifacts the value 408

−1. Classifiers were trained on emboli and artifacts; HITS clas- 409

sified as unsure were excluded from our analysis. For the ith 410

HITS, the classification function is of the form 411

ŷi =

{
1, {1 + exp (−hᵀgi)}−1 ≥ η

−1, else
(15)
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where ŷi is the algorithm-assigned label, gi = [1, gi1 , ..., giJ ]ᵀ412

is the vector of J features augmented by a bias term, h =413

[h0 , h1 , ..., hJ ]ᵀ is the vector of model parameters, and η is414

the classification threshold. Features were first converted to Z-415

scores by subtracting the respective feature mean, and dividing416

by the feature standard deviation in the training data. The model417

parameters were obtained by minimizing the l2-regularized418

logistic loss function419

L(h) =
I∑

i=1

ln {1 + exp (−yih
ᵀgi)} + λ ‖h‖2 (16)

where yi is the training label assigned to the ith HITS, I is the420

number of training samples, and the regularization parameter λ421

was empirically set to 1.422

C. Classifier Evaluation423

We analyzed feature statistics and trained logistic regression424

classifiers on the individual features to assess their artifact-425

rejection performance. We then selected the three top perform-426

ing features in this univariate analysis for inclusion in the final427

classifier. The final three-feature classifier was applied after428

WFLC-based HITS detection and again after the final TF-based429

emboli separation step.430

We evaluated classifier performance by computing classifi-431

cation sensitivity and specificity. By varying the classification432

threshold we obtained the full receiver operating characteris-433

tic (ROC) curve for each individual classifier, and for the final434

three-feature classifier. To select the detection threshold for each435

classifier, we computed the distance from each point on the ROC436

to the (0,1) point on the ROC plot, thereby giving equal weight437

to both sensitivity and specificity. We selected the threshold438

value corresponding to the point on the ROC that minimized439

that distance.440

A randomly selected 60% subset of the agreed-emboli and441

agreed-artifacts HITS annotations from the seven MCS patients442

was used for classifier training and threshold selection, and the443

remaining 40% were used for testing classifier performance. To444

ensure robustness of our approach, we applied the classification445

rule to annotated HITS from an independent hold-out validation446

data set, consisting of 500 emboli and 133 artifact annotations447

from the four patients in our study cohort undergoing cardiac448

catheterization.449

V. RESULTS450

A. Data Annotation and Inter-Rater Variability451

Each annotator reviewed and scored 696 detected HITS452

events from seven MCS patients. Per-patient annotation counts453

ranged from 50 to 200. Notably, all annotated emboli events454

came from just two patients. The annotation results are sum-455

marized as a confusion matrix in Table II, and Cohen’s kappa456

metric [30] for inter-rater agreement was 72%. The annotation457

accuracy, or fraction of annotations on the main diagonal of the458

confusion matrix, was 83%. We trained and tested our classi-459

fiers on the 482 annotated HITS events of agreed-embolic and460

agreed-artifact events.461

TABLE II
ANNOTATION INTER-RATER CONFUSION MATRIX

Fig. 5. Box plots of feature values for the six candidate features
for the training data. Statistical significance at the 0.05 level deter-
mined by Mann-Whitney-Wilcoxon test is indicated by asterisks; n.s.:
not significant.

TABLE III
SINGLE-FEATURE CLASSIFIER PERFORMANCE.

Sen: SENSITIVITY; Spec: SPECIFICITY

B. Artifact Rejection 462

Box-plots of the feature values obtained on the training data 463

for each of the six candidate features are shown in Fig. 5. Good 464

separation of the median feature values for emboli and arti- 465

facts were achieved for unidirectionality, duration ratio, and 466

normalized distance. The single-feature classification perfor- 467

mance is summarized in Table III. Based on their classifica- 468

tion performance, we selected unidirectionality, duration ra- 469

tio, and normalized distance for inclusion in the three-feature 470
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Fig. 6. Scatter plot and 2D projections for three features of emboli
(red) and artifacts (blue) for the validation data. Optimal artifact rejection
decision boundary for the classifier is shown in magenta and was based
on the optimal decision thresholds derived from the training data.

logistic regression classifier. This classifier achieved sensitiv-471

ities of 98.0% (95% CI: 95.3–100.0), 95.6% (95% CI: 91.0–472

100.0) and 91.4% (95% CI: 88.9–93.9) for 100% (95% CI:473

100.0–100.0) specificity on the training, testing, and validation474

data, respectively. These results held up under formal 10-fold475

cross validation applied to the training data with bootstrapping476

to compute confidence intervals on sensitivity and specificity.477

We obtained a mean training sensitivity and specificity of 98.4%478

Fig. 7. Histogram of emboli generated by TF analysis for each segment
extracted by the WFLC method.

(95% CI 95.8–100.0) and 99.5% (95% CI 98.9–100.0), respec- 479

tively, and a mean testing sensitivity of 98.1% (95% CI 94.5– 480

100.0) and associated specificity of 97.9% (95% CI 95.2–100.0). 481

The trained classifier assigned weights of 2.5, 1.3, and 1.2 to 482

Z-score-normalized unidirectionality, duration ratio, and nor- 483

malized distance, indicating that the classification is driven 484

strongly by the unidirectionality feature. Emboli and artifacts 485

from the validation cohort are shown in the scatter plot of Fig. 6 486

along with the classifier boundary derived from the training data. 487

The projections in Fig. 6 demonstrate that duration ratio and 488

normalized displacement show strong collinearity for emboli 489

and may only add incrementally over the classification perfor- 490

mance of the unidirectionality feature. When we performed a 491

formal sequential feature selection approach using MATLAB’s 492

sequentialfs function, only the unidirectionality and normalized 493

distance features were selected. The two-feature sensitivity and 494

specificity were 99.0% (95% CI 97.1–100.0) and 99.5% (95% 495

CI 98.5–100.0) for the training set, 100.0% (95% CI 100.0– 496

100.0) and 98.4% (95% CI 96.1–100.0) for the testing set, and 497

96.4% (95% CI 94.8–98.0) and 99.2% (95% CI 97.8–100.0) for 498

the validation set. The slight loss in sensitivities on the valida- 499

tion data set is to be expected given that the algorithm was not 500

trained on any of the validation data and the fact that the vali- 501

dation data were captured from a different clinical intervention 502

from the ones represented in the training data. 503

C. Patient Embolic Loads 504

We applied the final emboli detection pipeline–consisting of 505

WFLC-based adaptive HITS detection, TF emboli separation, 506

and artifact rejection–to the entirety of all twelve patient record- 507

ings. Of the WLFC-derived embolic HITS, 38% were further 508

segmented into two or more embolic events by the TF-based 509

HITS separation approach. This decomposition accounted for 510

69% of the final emboli count (Fig. 7), emphasizing the need to 511

incorporate an emboli segmentation step into EBR-based HITS 512

detection approaches. 513

Representative cumulative embolic counts for three record- 514

ings are shown in Fig. 8, and the embolic loads for all records 515

are summarized in Table IV. The table also lists embolic counts 516

as derived by applying the three-feature artifact-rejection 517

classifier to the WFLC-derived HITS (i.e. without applying the 518
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Fig. 8. Examples show the range of Doppler power (top) and emboli counts (bottom) in patients undergoing (a) VAD support, (b) ECMO, and
(c) cardiac catheterization. The Doppler power (gray) and the estimated baseline power (black) are shown along with the cumulative embolic counts
from the DWL emboli-detection software (blue) and our proposed method (red).

TABLE IV
PER-PATIENT EMBOLI COUNTS ACCORDING TO TCD DEVICE (DWL),

WFLC SEGMENTATION ONLY AND TF PROCESSING

TF HITS separation). Relative to the manufacturer-provided519

counts, we observed a median percentage reduction of 64% in520

emboli counts.521

VI. DISCUSSION522

Accurate, real-time emboli monitoring remains an open prob-523

lem in the pediatric population. In adults, real-time emboli524

monitoring during carotid endarterectomy can alert the surgeon525

to incorporate cerebral protection measures [31]. In cardiopul-526

monary bypass, it led to the change from bubble to membrane527

oxygenators and the introduction of arterial line filters [32]. Ap-528

proximately 10% of neonates and infants have seizures (clin-529

ical or subclinical) following heart surgery [33]. As seizures530

have been associated with adverse neurodevelopmental out-531

come [34], correlating the burden of emboli with post-operative532

seizures may lead to new strategies for their prevention.533

Several limitations of existing Doppler-based embolus detec-534

tion methods have been reported in the literature. These include535

requiring computations that operate over large signal blocks, 536

thereby limiting real-time operation [11], generation of exces- 537

sive false positive events [8], and an inability to distinguish 538

multiple emboli that flow through the insonation region simul- 539

taneously [18]. We have developed a novel single-depth, single- 540

insonation-frequency embolus detection method that attempts 541

to address these problems. 542

We introduced a WFLC framework to generate baseline 543

power estimates of received Doppler data. Segments whose 544

power exceeds an adaptively estimated threshold were selected 545

as candidate emboli. We integrated a time-frequency segmenta- 546

tion step into our algorithm that attempts to separate signatures 547

from emboli that flow into the ultrasound beam concurrently. 548

When compared to the embolus detection performance of a 549

commercially available two-depth, dual-frequency device, our 550

method led to a median reduction in embolic counts by 64% in 551

a pediatric patient cohort. 552

Computation requirements: Our system does not utilize in- 553

formation from future signal values, thereby allowing it to func- 554

tion in real-time, albeit with latency inherent in the internal 555

computations. Preliminary HITS detection is performed with 556

minimal delay since signal power computation introduces only 557

a 2 ms latency (as 2 ms nonoverlapping data windows are used), 558

and because the WFLC algorithm does not introduce additional 559

delay–it was designed for zero-phase cancellation of periodic 560

disturbances [19]. An artifact-rejection classifier is applied to 561

minimize subsequent computation burden. The classification 562

procedure itself uses three easy-to-compute features in a simple 563

logistic regression model. We designed our finite impulse re- 564

sponse filter bank such that each filter has the same group delay 565

[27]. Thus, these filters may be implemented as a set of parallel, 566

causal delay lines to generate time-frequency representations of 567

candidate HITS with a latency equal to the group delay. In our 568

subsequent TF analysis, we employ commonly used image pro- 569

cessing tools, optimized implementations of which are readily 570

available for target deployment platforms. 571

Artifact rejection performance: Our classification perfor- 572

mance is predicated on HITS training labels provided by our 573
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expert annotators, who achieved an inter-rater reliability (Co-574

hen’s kappa) of 72%. Our reference annotations may thus be575

interpreted as reliable [35]. Similar kappa values (72%, and576

90%) have previously been reported in the literature for embo-577

lus annotations by human experts [36], [37].578

Our artifact rejection scheme uses a logistic regression579

classifier that allows interpretation of the factors driving high580

classification sensitivity and specificity. Specifically, upon581

examining the classifier weights, it may be seen that there582

is greater emphasis on unidirectionality. The attained high583

classification sensitivity and specificity are on par with those584

reported in prior literature [9], [13], [38], [39]. For instance,585

Darbellay et al. [13] reported embolus classification sensitivity586

of 95% and associated specificity of 97% on a testing data587

set comprising 600 emboli and 530 artifacts. Using seven588

classification features, Sombune et al. [39] recently reported an589

average classification sensitivity of 91.5%, average specificity590

of 90.0%, and average accuracy of 90.5%, outperforming the591

work by Karahoca and Tunga [38]. Brucher and Russel [9]592

previously proposed using four features in a decision tree:593

difference in Doppler shift due to dual-frequency insonation (2594

and 2.5 MHz), a measure of expected signal duration, emboli595

presence in a second depth, and unidirectionality. They reported596

that 99% of all artifacts and emboli were classified correctly597

by their system in a data set comprising 554 emboli and 800598

artifacts. In our approach, we found that while the HITS speed599

(or equivalently, the signal frequency) is different between600

artifacts and emboli (Fig. 5), the attained classification accuracy601

in our data set for this feature was not strong. Also, our classifi-602

cation approach only uses information from one depth and one603

insonation frequency. During our initial experiments, we found604

that several emboli may flow simultaneously, making it difficult605

to reliably match their signatures across different depths. The606

traveled distance feature has previously been shown to discrim-607

inate between gaseous and solid emboli [29]. We found this608

metric to be useful in separating artifacts from emboli as well.609

Embolus separation using TF analysis: Multiple emboli can610

often be generated simultaneously, such as during catheter ma-611

nipulation during cardiac catheterization or aortic cross-clamp612

release in cardiac surgery [8], [18]. Single-channel Doppler de-613

vices have been reported to be incapable of reliably detecting614

emboli in such circumstances [18]. Instead, methods have been615

proposed that use information from multiple depths (M-mode616

imaging) [40] or raw radio-frequency (RF) data [18]. Lipperts617

et al. [18], for instance, proposed an image processing approach618

using successively received RF ultrasound signals to improve619

the estimation of the number of emboli encountered in embolic620

showers during cardiac surgical procedures. They claim that ex-621

isting TCD systems do not accurately estimate the number of622

cerebral emboli during such showers. Using RF data is akin to623

processing information from a range of depths, and allows the624

authors to separate signals from multiple emboli more easily,625

albeit at the expense of processing requirements.626

To our knowledge, the problem of automatically sepa-627

rating signatures from multiple simultaneous emboli using628

single-depth, single-frequency TCD systems has not been ad-629

dressed in the literature. Colantonio and Salvetti [41] extracted630

HITS patches from Doppler TF images using a line-tracking631

procedure, but did not explicitly attempt to separate close HITS. 632

Moreover, in their approach, the authors use a segmentation 633

threshold determined via a pre-trained neural network. Like- 634

wise, in [11], the authors extract a region of interest in HITS 635

spectrograms by examining asymmetric (unidirectional) flow 636

regions, without attempting to separate individual HITS. In our 637

study, 38% of HITS detected by the WFLC stage were sub- 638

sequently split into two or more emboli by the TF processing 639

stage. Emboli split in this fashion accounted for 69% of the total 640

embolic load, suggesting the potential need to incorporate such 641

emboli segmentation into emboli detection systems. 642

We believe that extracting individual emboli signatures is 643

important, not just to establish accurate emboli statistics, but also 644

for subsequent characterization of embolic signal properties (for 645

example, their material composition). At present, we employ a 646

set of simple heuristic rules that determine how TF patches are 647

merged by analyzing the net traversed distance of the patches 648

and the difference in velocities of those patches. In doing so, 649

we implicitly assume that the underlying emboli do not have 650

a wide size range (by constraining normalized displacements 651

between NDmin and NDmax ). It has been reported that in adults, 652

particulate emboli with diameters below 100 μm are unlikely to 653

be detected via Doppler ultrasound owing to the diameter of the 654

MCA [13], [16]. Likewise, particulate emboli with sizes above 655

240 μm are thought to cause stroke [13]. None of the patients 656

in our cohort suffered from a clinically apparent stroke, and 657

hence it is plausible that the particulate emboli in our data were 658

within a narrow size range. Future work, however, can focus 659

on assessing particle size to further guide the TF patch merging 660

process. 661

Comparison with the DWL: The DWL device exports its de- 662

tected HITS with a timestep granularity of 10 ms, thereby pre- 663

venting a segment-by-segment comparison between embolic 664

counts. We found, however, that our embolic counts exhibit 665

greater sensitivity during embolic showers, as exhibited by 666

larger steps in the cumulative counts in Fig. 8. At the same 667

time, we found that in several recordings, the device’s cumu- 668

lative counts exhibit linear trends, suggesting a constant back- 669

ground embolic rate. Our method does not show such linear 670

trends, and this difference could be due to both different detec- 671

tion sensitivities and embolic classification steps. On the whole, 672

our method reduced the embolic counts by a median 64%, po- 673

tentially suggesting that the device may be generating excessive 674

false positive events. 675

Contributions: We have proposed a single-depth, single- 676

frequency Doppler based approach to detect, classify, and sepa- 677

rate closely opposed emboli. The initial detection is performed 678

via a WFLC-based method. This is attractive because it enables 679

modeling the pulsatile nature of blood flow and also computes an 680

adaptive detection threshold in real-time using simple computa- 681

tions for high detection sensitivity in both systolic and diastolic 682

segments. We integrated our simple and interpretable logistic 683

regression based artifact-rejection scheme into a TF process- 684

ing approach in order to separate HITS into individual embolic 685

events that may overlap in both time and frequency (velocity) 686

using a single Doppler channel. The proposed approach, when 687

applied to data from pediatric patients ranging in age from 3 688

weeks to 14 years, reduced the median embolic counts by more 689
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than a factor of two, thereby warranting further exploration of690

accuracies of commercial devices. Future work should also fo-691

cus on examining differences between embolic signatures of692

gaseous and particulate emboli. Likewise, integrating the abil-693

ity to size emboli will enable better separation of HITS that694

occur simultaneously.695

Limitations of current work: Currently, our method’s696

performance has been evaluated on a small data set in which697

ambiguous HITS were excluded and ground truth information698

about the type, number, and size of emboli was missing. Further699

work is needed to test the classifier on more heterogeneous test700

sets, potentially in flow phantoms where embolic composition701

and size can be controlled and analyzed (or more reliably702

determined). Likewise, our TF method will need to be tested in703

a variety of flow environments on a range of embolic sizes and704

compared against ground truth data in order to further assess705

its detection ability.706

VII. CONCLUSION707

Patients with a variety of clinical conditions are susceptible708

to embolic events and stroke. Single-channel Doppler devices709

are commonly used to detect emboli, but current commercial 710

TCD systems seem to overestimate embolic load. Our proposed 711

embolus detection approach advances single-channel Doppler 712

emboli monitoring by: 1) introducing a novel emboli-detection 713

algorithm, coupled with artifact rejection stages that use simple- 714

to-compute features; and 2) by separating embolic signatures 715

through time-frequency processing. Our method paves the way 716

for more reliable embolic load assessment so that appropriate 717

clinical trials can be designed that may lead to improved patient 718

care and neurologic outcomes. 719
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APPENDIX 727

Patient information is summarized in Table V. 728

TABLE V
PATIENT DEMOGRAPHIC AND CLINICAL INFORMATION

MCS; mechanical circulatory support; ECMO, extracorporeal membrane oxygenation; VA, veno-arterial; VAD, ventricular assist device; CHD, congenital
heart disease; PA/IVS, pulmonary atresia/intact ventricular septum; HLHS, hypoplastic left heart syndrome; RV, right ventricle; LV, left ventricle; RA,
right atrium; LA, left atrium; RCA, right carotid artery; RIJV, right internal jugular vein; ECPR, ECMO cardiopulmonary resuscitation; GBS, group B
streptococcus; CPB, cardiopulmonary bypass; TOF/PA, tetralogy of Fallot/pulmonary atresia; PV, pulmonary vein; dTGA, d-transposition of the great
arteries; ASO, arterial switch operation.
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